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Soft processors have a role to play in simplifying FPGA application design as they can be deployed only when
needed, and it is easier to write and debug single-threaded software code than create hardware. The breadth
of this second role increases when the performance of the soft processor increases, yet the sophisticated out-
of-order superscalar approaches that arrived in the mid-1990s are not employed, despite their area cost
now being easily tolerable. In this paper we take an important step toward out-of-order execution in soft
processors by exploring instruction scheduling in an FPGA substrate. This differs from the hard-processor
design problem because the logic substrate is restricted to LUTs, whereas hard processor scheduling circuits
employ CAM and wired-OR structures to great benefit. We discuss both circuit and microarchitectural trade-
offs, and compare three circuit structures for the scheduler, including a new structure called a fused-logic
matrix scheduler. Using our optimized circuits, we show that four-issue distributed schedulers with up to
54 entries can be built with the same cycle time as the commercial Nios II/f soft processor (240 MHz). This
careful design has the potential to significantly increase both the IPC and raw compute performance of a
soft processor, compared to current commercial soft processors.

CCS Concepts: •Computer systems organization → Superscalar architectures; •Hardware → Re-
configurable logic applications; Sequential circuits;

1. INTRODUCTION
The design effort required to build large modern FPGA systems has become a key fo-
cus of the industry. Many of the approaches to reduce design time take the form of
transforming software directly into hardware. An alternative is to simply implement
that software on a processor, and the modern hard processors in FPGAs can take on
some of that role. However, various subsystems may require their own processor for
performance, security or design isolation reasons, and the limited number of hard pro-
cessors may not suffice. In that case, the ability to deploy a soft processor is important,
and the performance of the soft processor is key to determining how much of the sub-
system can be implemented in software. High performance soft processors may be a
better vehicle to attach custom-hardware accelerators, given their inherent flexibility.

Despite this, there are still no commercial out-of-order superscalar soft processors,
yet there is clear evidence from the hard processor arena that the move to out-of-order
results in a significant performance increase. This is illustrated in Table I, which pro-
vides SPECint scores between pairs of historical hard processor architectures that
moved from in-order to out-of-order microarchitectures. The ratio of each pair of per-
formance numbers in that table are normalized to the same operating frequency to iso-
late instructions per cycle (IPC) from clock frequency improvements. The table shows
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that performance increases by a factor of 1.6 to 2 times moving to out-of-order. This
performance improvement largely arises from exploiting instruction-level parallelism
and tolerating the multicycle latency of memory operations.

If these cycle-count performance gains can be obtained without sacrificing operating
frequency (fmax), then soft processors can achieve significant performance gains.

This paper focuses on a key component of an out-of-order processor, the instruction
scheduler, and explores the microarchitecture and design of scheduler circuits that
yield high IPC and large gains in fmax operating frequency. Prior work has often failed
to achieve reasonable fmax [Mesa-Martı́nez et al. 2006; Schelle et al. 2010; Rosière et al.
2012], although at least one prior work has shown out-of-order instruction schedulers
on an FPGA at reasonable fmax [Aasaraai and Moshovos 2010]. Our new circuit de-
signs improve on these earlier results, achieving 60% greater fmax for the same size of
scheduler, as shown in an earlier version of this work [Wong et al. 2016]. In this paper
we significantly expand the work to build multi-issue distributed schedulers that have
slightly higher fmax than single-issue scheduler circuits of the same total scheduler ca-
pacity. We designed four-issue distributed compacting matrix schedulers that can run
above 240 MHz (the same as a Nios II/f on a Stratix IV FPGA) at up to 54 entries,
although the multiple-issue schedulers cost more than twice the area of a single-issue
scheduler of the same capacity.

This paper begins with an overview of instruction scheduling trade-offs in Section 2
followed by a description of the classical scheduling circuits in hard processors in Sec-
tion 3. Section 4 discusses FPGA circuit designs that are evaluated in Section 6. Sec-
tion 7 then uses these circuits to build multiple-issue schedulers. Section 9 discusses
further optimizations for future scheduler designs.

2. REVIEW OF INSTRUCTION SCHEDULING IN OUT-OF-ORDER PROCESSORS
The key attribute of out-of-order processors is that they execute instructions in
dataflow order (based on data dependencies) rather than program order. In typical
processor pipelines, this dataflow ordering occurs after the instructions are fetched,
decoded, and register renamed in program order. They are then inserted into the in-
struction scheduler, which executes instructions as they become ready. Instructions
leave the scheduler when completed. Finally, completed instructions are committed in
program order.

The instruction scheduler is responsible for tracking the readiness of every not-yet-
completed instruction and for choosing which ready instruction should be executed
each cycle. An instruction is ready to execute when all of its source operands are avail-
able, having been computed by previously executed instructions.

An instruction scheduler holds a pool of instructions that are waiting to be executed.
The wakeup portion of the scheduler is responsible for determining when a waiting

Table I. Comparison of SPECint scores between in-order and out-of-order processors and frequency-
normalized ratio

Vendor SPEC Version In-order Out-of-Order Ratio
Processor SPEC score Processor SPEC score

MIPS [SPEC 2000] SPECint 95 R5000
180 MHz

4.8 R10000
195 MHz

11.0 2.1

Alpha [SPEC 2000] SPECint 95 21164
500 MHz

15.0 21264
500 MHz

27.7 1.9

Intel [SPEC 2000] SPECint 95 Pentium
200 MHz

5.5 Pentium Pro
200 MHz

8.7 1.6

Intel [Kuttanna 2013] SPECint 2006 Atom S1260
2 GHz

7.4 Atom C2730
2.6 GHz

15.7 1.6
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instruction is ready for execution. It does this by observing which instructions are
completing in each cycle and comparing their outputs with the required inputs for
each waiting instruction. The selection logic is responsible for selecting one of the ready
instructions for execution.

Multi-issue schedulers are built around the same wakeup and select circuits. The
wakeup and select logic can be extended to handle multiple operations per cycle, or
more commonly, the wakeup and select logic can be replicated to achieve the needed
instruction execution throughput. In a superscalar processor, the peak throughput of
the instruction schedulers usually exceeds that of the overall processor (fetch, decode,
and commit), as instruction execution tends to have lower utilization due to data de-
pendencies and the execution units being specialized for particular types of operations
(e.g., branches, memory, or integer).

2.1. Scheduler Trade-offs
Processor design is all about trading off IPC, fmax, and design complexity. Here we
discuss three major design decisions that affect this trade-off.

First, the number of scheduler entries affects how far ahead in the instruction
stream instructions can be searched to find instruction-level parallelism (ILP). Larger
schedulers (with more entries) increase ILP and IPC, but require more area and tend
to have lower fmax. For example, Figure 1(a) shows how IPC improves with scheduler
size on the two-issue superscalar system we explore in this paper. More scheduler en-
tries improve IPC but eventually give diminishing returns, because other parts of our
processor limit the number of in-flight instructions.

Second, the selection policy — how to decide which of several ready instructions
should execute — has an impact on IPC. Oldest instruction first is a known good
heuristic as it is more likely that an older instruction blocks execution of later de-
pendent operations, but requires tracking the age of entries in the scheduler, which
has a hardware cost. Figure 1(b) shows the impact of an oldest-first selection policy
compared to random selection. The IPC impact is small for small schedulers because
the chance of having more than one ready instruction is lower, but the impact grows
to over 15% for large schedulers. Prior out-of-order processors have mostly employed
age-based selection [Golden et al. 2011; Farrell and Fischer 1998; Vangal et al. 2002;
Gwennap 1997].

The third key decision is whether wakeup and selection operations complete in a
single cycle, which allows execution of dependent operations in consecutive cycles,
but makes circuit timing more challenging. A processor will suffer a roughly 10% IPC
penalty for adding just one extra cycle of scheduling latency [Brown et al. 2001; Stark
et al. 2000].

The trade-offs in multi-issue schedulers are the same, but have many more degrees
of freedom. In a distributed multi-issue scheduler, each cluster can potentially have its
size, selection policy and latency chosen independently from the others.

In this work, which focuses on fast circuits for high-performance soft processors,
we make the following two up-front design decisions: 1) a requirement of single cycle
wakeup and 2) an oldest-first selection policy (although we will measure the impact of
omitting this for one case). For all scheduler designs we explore, we will measure the
impact of a wide range of the number of entries.

3. BACKGROUND ON SCHEDULER CIRCUITS
As described above, schedulers have two key components: wakeup logic to determine
which instructions are ready and selection logic to choose among the ones that are
ready to execute in the next cycle. In this section we describe how classical hard pro-

3



4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Geomean
Dhrystone
MiBench
Coremark
Doom
SPECint 2000

Scheduler Capacity (entries)

x8
6 

IP
C

(a) IPC vs. Scheduler Capacity

4 8 16 32 64

-5%

0%

5%

10%

15%

20%

25%
Geomean
Dhrystone
Coremark
MiBench
SPECint 2000
Doom

Scheduler Capacity (entries)
IP

C
 Im

pa
ct

 o
f A

ge
 S

ch
ed

ul
in

g 
(%

)

(b) Benefit of Age Priority vs. Random

Fig. 1. IPC sensitivity to scheduler capacity and age-based selection policy. The simulated processor has 1
each of branch, ALU, AGU, and store-data execution units, 64 reorder buffer entries, and a peak IPC of 2.

cessor CAM-based and matrix [Goshima et al. 2001] schedulers perform these two
functions.

3.1. Wakeup Logic
CAM-based schedulers track operand dependencies using physical register numbers
(after register renaming). Each entry in the scheduler’s wakeup array holds an in-
struction’s two source operand register numbers and two comparators that compare
them to the destination register number of instructions completing each cycle. A source
operand is available after its register number has been broadcast on a result bus, and
an instruction is ready when all source operands are ready.

Matrix-based schedulers track dependencies by the position of producer instructions
in the scheduler. Each entry (row) of the wakeup array contains a bit vector indicat-
ing which instructions in the scheduler will produce the source operands. The result
bus bit vector indicates which instructions are granted execution each cycle, and an
instruction is ready when all producer instructions have completed.

3.2. Selection Logic
The selection logic is responsible for choosing one instruction for execution from a set
of ready instructions. The simplest and fastest selection logic uses fixed priority, prior-
itizing instructions based only on an instruction’s position in the scheduler. However,
age-based selection heuristics improve IPC (Section 2.1). Age-based selection can be
achieved by maintaining age ordering of scheduler entries, or allowing random or-
dering of instructions in the scheduler and augmenting the selection logic with age
information.
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Compacting schedulers insert new instructions at the top, and shift scheduler en-
tries down to fill holes left behind by instructions that have completed execution. Com-
paction allows a fast fixed-priority selection circuit to be used. The main drawback is
in the power consumption of shifting the scheduler entries and the delay of the multi-
plexer required for shifting.

Explicitly tracking instruction age makes selection logic more complicated due to
dynamic priority. There are many methods to track age, including precise and approx-
imate methods (e.g., [Vangal et al. 2002; Golden et al. 2011]). Our matrix scheduler
uses an age matrix, a precise method that uses a matrix where the bits in each row
indicate which instructions are older than the instruction occupying the row [Sassone
et al. 2007].

3.3. Fusing Wakeup and Selection
Instruction schedulers are usually implemented with separate wakeup and select cir-
cuits, performed sequentially. For matrix schedulers on FPGAs, the wakeup logic’s
wide OR gate reductions and the selection logic’s pick-first-ready scan logic are both
implemented as trees of LUTs. In some circuits, it is possible to reformulate the
logic function to combine two reduction or scan operations into one, improving delay.
The sum-addressed decoder is one well-known example of this kind of transforma-
tion [Lynch et al. 1998].

Inspired by this strategy, we present a new scheduler circuit, the fused-logic matrix
scheduler, that combines both the wakeup wide-OR and select linear scan operations
into a single tree of LUTs. This circuit is faster than both the CAM and age-based
matrix schedulers for most scheduler sizes.

4. DETAILED CIRCUIT DESIGNS
This section discusses the circuit designs of the three scheduler circuits we imple-
mented on the Stratix IV FPGA: a compacting CAM scheduler, a non-compacting ma-
trix scheduler, and our new fused-logic matrix.

4.1. CAM
Our CAM scheduler implementation, shown in Figure 2, uses compaction to main-
tain age ordering and allows back-to-back scheduling of dependent operations. In each
cycle, ready bits are used to select an instruction for execution. The selected instruc-
tion’s destination tag is then broadcast on the result bus, and consumers of the newly-
produced register are woken up.

4.1.1. Wakeup. Each entry in the CAM wakeup logic has two source operand tags
and an associated pair of comparators. The comparators monitor the result bus for
a physical register number that indicates when an operand becomes available. An
instruction is ready when all operands are available and has not already been selected
for execution. The register number is assumed to be large enough to hold at least twice
the scheduler capacity, so comparators compare two log2N + 1 bit numbers. Each 6-
LUT can do three bits of a comparison, which is followed by an AND tree, so the total
logic depth for two comparators is roughly log6(4(log2N + 1)). The ready bit of every
entry, forming a ready vector, is sent to the selection logic.

4.1.2. Compaction. Our CAM wakeup logic can shift down to eliminate up to one hole
per clock cycle. This is enough because only one instruction can be selected for execu-
tion each cycle, so new holes are created no faster than one per cycle. Compacting by
one position occurs through 2-to-1 multiplexers immediately before the set of pipeline
registers.
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Fig. 2. CAM wakeup circuit. Entries compact downwards. An example critical path is highlighted in red.

The control logic to decide whether each entry should shift down is a prefix OR
operation, computing for each entry whether there is a vacant entry at or below the
current position. This prefix OR function is implemented using a tree of LUTs with
logic depth log6(N) using a radix-6 Han-Carlson prefix tree with sparsity 6 [Harris
2003]. The radix and sparsity were chosen to suit a 6-LUT FPGA architecture.

4.1.3. Selection. The CAM scheduler’s selection logic performs two functions. It must
grant execution to the oldest ready instruction, and it must also select that instruc-
tion’s destination register number and broadcast it on the result bus to wake up de-
pendent operations.

One grant signal per entry indicates whether that entry has been selected for exe-
cution. Oldest-ready grant logic is implemented using the same radix-6 Han-Carlson
prefix tree used for computing the wakeup compaction multiplexer control signals.

Generating the destination register is done with a priority multiplexer that selects
the destination register number field of the oldest ready instruction. The priority mul-
tiplexer has a logic depth of log4N LUTs, implemented as a radix-4 tree using 7-input
ALMs1. Figure 3 shows this circuit.

4.2. Matrix
The matrix scheduler implementation tracks dependencies of instructions using a
wakeup matrix of dependency bits. We evaluated the matrix scheduler both with and
without age-based selection. In each cycle, the ready bits (and age matrix) are used to
select an instruction for execution, and grant signals are broadcast into the wakeup
matrix to wake up dependent instructions.

4.2.1. Wakeup. The wakeup array, shown in Figure 4, consists of a matrix of depen-
dency bits, used to track when each instruction is ready. The dependency bits are
cleared by the grant signals as instructions are granted for execution. When all of

1A Stratix IV ALM can implement 7-input functions that can be expressed as a 2-to-1 multiplexer selecting
between two 5-input LUTs that share 4 inputs [Altera 2011].
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the bits in a row are ready or are just granted this cycle, the ready bit for the row
is set, resulting in a N -wide NOR of required-and-not-granted functions. An N -wide
NOR of two-input functions (2N inputs) can be computed with a tree of 6-input LUTs
with depth log6(2N).
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4.2.2. Position-Based Selection. The position-based select logic grants a ready instruc-
tion if there are no other ready instructions before it. As scheduler position does not
correlate with instruction age, position priority is essentially random priority. It is im-
plemented using the same radix-6 Han-Carlson prefix tree as the CAM selection grant
logic (Section 4.1.3).

4.2.3. Age-Based Selection. The age-based selection logic uses an age matrix to dynam-
ically specify age priority, as the scheduler entries are not ordered by age. An age
matrix specifies for each row which other instructions are older than itself. A ready
instruction is granted execution if there are no older ready instructions, which is a
N -wide NOR of ready-and-older functions. This is computed with a radix-6 tree with
logic depth log62N , shown in Figure 5. The age matrix has symmetry (if instruction A
is older than B, then B must be younger than A), so we omit half of the registers to
reduce area.

Compared to the compacting CAM scheduler, the 2-to-1 compaction multiplexer and
radix-4 priority multiplexer are removed from the critical loop. Dynamic-priority grant
logic is slower than fixed-priority grant logic, with depth log6(2N) rather than log6(N).
The CAM and matrix wakeup delays scale differently with scheduler size, favouring
matrix wakeup for small sizes, but CAM wakeup for large sizes.

4.3. Fused-Logic Matrix
With separate wakeup and selection circuits, both the CAM and matrix schemes con-
tained two reduction trees of LUTs in their critical path: one for the wakeup logic, and
one for selection. To further improve speed, we endeavoured to create a scheduler with
a critical loop containing only one reduction tree that would perform both wakeup and
select functions.

The resulting design is a compacting matrix scheduler with fused wakeup and select
logic. Dependency information is expressed as a matrix of dependency bits like the
matrix scheduler, but select and wakeup are computed using a single radix-4 tree of
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LUTs. Conceptually, instead of having one instance of selection logic broadcasting its
result to per-entry wakeup logic, the selection logic is also replicated per entry and
merged with the wakeup logic. Figure 6 shows this arrangement.

4.3.1. Wakeup and Select. Scheduler entries are ordered by age using compaction, so
the selection uses fast fixed-priority selection. Each row has a combined select-and-
wakeup circuit. The two inputs to each instance of the select-wakeup logic are a ready
vector indicating which instructions are ready for execution, and a dependence vector
indicating whether the instruction in the current row is dependent on each instruc-
tion. The select-wakeup logic computes whether the current instruction depends on
the oldest ready (i.e., selected) instruction. If so, this means one dependency has been
satisfied, and a two-bit counter storing the number of outstanding dependencies is
decremented. An instruction is ready when the counter reaches zero. Grant logic is
still used to generate grant signals to clear dependency bits in the matrix, but is now
moved off the critical path.

The select-wakeup logic is equivalent to a priority multiplexer, implemented using
the circuit in Figure 3, which is a radix-4 tree of 7-input ALMs with a logic depth of
log4N . The priority multiplexer finds the first ready instruction and selects the one
bit of data indicating whether the instruction depends on the selected (oldest ready)
instruction.

There is more preprocessing that needs to be done than for the matrix scheduler. In
addition to encoding dependencies as positions in the scheduler, we also need to count
how many dependencies are outstanding, which is a population count of the depen-
dence vector. In this implementation, the single-cycle preprocessing is a critical timing
path. However, because it is outside the wakeup-select loop, it should be possible for
future implementations to further pipeline preprocessing without giving up the ability
to schedule dependent instructions in back-to-back cycles.

4.3.2. Compaction. Compaction of a matrix is more complex than for a CAM-based
scheduler. In a matrix scheduler, the bits in each row indicate the scheduler posi-
tion of the parent instructions, whose positions will also change due to compaction.
As scheduler entries are compacted downwards in a matrix scheduler, the dependency
bit vectors are also compacted horizontally to track the changing instruction positions
as they shift down the scheduler. Fortunately, the extra compaction logic is off the
critical wakeup and select loop.

5. EVALUATION METHODOLOGY
The main objective of this work is to evaluate area and fmax of different circuit-level
implementations of broadcast-based instruction schedulers. We build optimized cir-
cuits for the circuits described in the previous section (CAM, non-compacting matrix,
and fused-logic matrix) targeting a Stratix IV FPGA (smallest, fastest speed grade,
EP4SGX70-C2) using Quartus 15.0 using default settings, but register retiming was
enabled where it made a difference).

We sweep scheduler capacity (entries) and observe area and fmax scaling as the
scheduler size varies. Circuit results are the mean of 100 random seeds. We focus on
area and delay here because all of the scheduler circuits have nearly the same cycle-
by-cycle behaviour: they wake up all ready instructions every cycle and select either a
random instruction or the oldest ready instruction for execution.

Although the focus of this paper is on scheduler circuit design, we need to evalu-
ate IPC on at least one processor microarchitecture. In this paper, we model a fairly
typical two-issue out-of-order x86 microarchitecture. Our simulator is based on the
Bochs [Lawton 1996] functional model of an x86 system, modified with a new cycle-
level model of an x86 soft processor microarchitecture we are currently developing. The
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processor front-end decodes x86 instructions into micro-ops. The instruction scheduler
sees only micro-ops and is unaware of x86 instructions. Thus, instruction scheduler de-
sign is mostly independent of instruction set, other than in details such as the number
of source operands per micro-op. We used a set of workloads totalling 25 billion x86
instructions. These include billion-instruction samples from SPECint2000 (reference
inputs), CoreMark, Dhrystone, the MiBench suite [Guthaus et al. 2001], and Doom
(first-person shooter game running under DOS).

6. CIRCUIT DESIGN RESULTS
This section presents area and fmax results of implementing CAM, matrix, and fused-
logic matrix scheduler circuits on a Stratix IV FPGA.

6.1. Area
Figure 7 compares the area of the three scheduler circuit types as scheduler size
changes. The two matrix schedulers scale similarly, as the size of the matrix grows
quadratically with the number of scheduler entries, but the matrix with position-based
selection is smaller as it does not have an age matrix. CAM schedulers have better
area at large sizes, as the size of comparators increases logarithmically (register num-
ber width) but the size of each matrix row’s OR gate increases linearly. This can be
seen more clearly when plotting area per entry, in Figure 7(b).

For out-of-order FPGA soft processors, we are mainly interested in small schedulers,
generally below 20 entries, where area does not differ greatly between scheduler types.
The poor area scaling of matrix wakeup logic for larger schedulers was also true in
custom CMOS. [Goshima et al. 2001].
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Fig. 7. Area of four scheduler types. Area per entry gives insight into scaling trends with scheduler size.

6.2. Delay
Figure 8 shows the achieved fmax for the three scheduler circuit types as scheduler
capacity is varied. The general trend, unsurprisingly, is that larger schedulers are
slower. The delay for the matrix schedulers increase faster than CAM schedulers at
large sizes. On an FPGA where there are no fast wired-OR circuits, we see smaller im-
provements vs CAM than those reported for custom CMOS implementations [Goshima
et al. 2001].

Among the three age-based schedulers, our new fused-logic matrix scheduler is the
fastest option beyond 6–10 entries, though at very large sizes, excessive area causes
poor routing delays. CAM schedulers are slow at small sizes, only being faster than the
age-based matrix scheduler beyond 24 entries. The position-based matrix scheduler
(“Matrix — Random”) is the fastest, but gives up age-based scheduling.

At small sizes (below 20 entries), both types of matrix scheduler are faster than
CAM schedulers, with little difference in area. The largest age-based scheduler that
can match the clock speed of a Nios II/f on the same FPGA (240 MHz or 4.2 ns) is
around 20 entries for CAM, 22 entries for age-based matrix, and 42 entries for the
compacting fused-logic matrix. A 44-entry position-based matrix scheduler also fits in
a 4.2 ns period, but has limited usefulness at this size given the large IPC degradation
of the selection policy. For comparison, current high-end x86 processors have 40–60
scheduler entries [Golden et al. 2011], while earlier out-of-order processors have far
less (20 for Alpha 21264 [Farrell and Fischer 1998], 16 for Pentium 4 [Vangal et al.
2002]). This suggests that moderately aggressive out-of-order designs are feasible on
FPGAs even when targeting the same frequency as simple single-issue in-order soft
processors.
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7. MULTIPLE-ISSUE SCHEDULERS
In the previous sections, we presented circuit designs for single-issue schedulers. Us-
ing one of these circuits alone could form the scheduler of a single-issue out-of-order
processor. Superscalar processors that execute more than one instruction per clock
cycle can provide large improvements in IPC, but require larger schedulers to find
instruction-level parallelism to keep execution units utilized. For example, in our simu-
lated processor design, a dual-issue pipeline has about 70% higher IPC than a pipeline
with a single-issue scheduler, but needs about 4 times as many scheduler entries to
reach that performance (Figure 12(b)).

To build schedulers for multi-issue soft processors, the circuits presented earlier
serve as fundamental building blocks. Single-issue schedulers need to select one ready
instruction for execution and (usually) wake up one instruction per clock cycle. Ex-
tending this to multiple issue is, in principle, fairly straightforward. In a multi-issue
scheduler, several ready instructions are selected each cycle (one per execution unit),
and instructions can be woken up by any of the several instructions that are complet-
ing each cycle. In practice, doing multiple actions (wakeup and select) within a clock
cycle can easily result in slow circuits. The design space that needs searching is also
potentially much larger.

Extending wakeup from one per cycle to several per cycle requires each scheduler
entry to monitor multiple result buses, and wake up if any of the result buses are
broadcasting the desired source operand (for CAM-based) or instruction (for matrix-
based). For CAM-based schedulers, wakeup occurs using register number tag com-
parisons between each source operand and all result buses. Multiple result buses thus
requires multiple comparators per source operand to detect whether the desired source
operand was produced by any result bus. This can be simplified to a multiplexer and
one comparator if it is known which result bus produces the necessary source operand.
For matrix-based schedulers, no modification to the wakeup array is needed to sup-
port multiple issue, nor to support the use of instructions with more source operands.
When multiple instructions execute in the same clock cycle, multiple grant wires are
asserted, which can clear multiple dependency bits in each row in the same cycle. For
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our fused-logic scheduler, the dependency-tracking mechanism requires decrementing
a counter that counts the number of outstanding dependencies. Extending this to sup-
port multiple issue requires either the counter to support decrementing by more than
one each clock cycle, or multiple counters (one per result bus) and waking up the in-
struction when all counters reach zero. Both options increase the logic depth by at least
one LUT logic level, making the fused-logic circuit unattractive for multiple issue.

A multiple-issue scheduler requires the selection logic to be extended to choose mul-
tiple ready instructions for execution each cycle. There are several common options to
implement multiple issue that trades flexibility (higher IPC) with circuit complexity.
If the execution units in the processor are identical, one option is to use selection logic
that picks the first several ready instructions for execution. This option is usually im-
practical because selection circuit delays grow with the issue width, as selecting each
subsequent instruction requires knowing which other instructions have also been pre-
viously selected this clock cycle. By assigning each instruction to an execution unit
before scheduling (possibly by necessity, if execution units are specialized), the depen-
dency between each instruction selection circuit is broken, and each selection circuit
searches the scheduler for the first ready instruction that has been pre-assigned to the
corresponding execution unit. This arrangement is often called a unified scheduler, as
all instructions occupy the same pool of scheduler entries. The circuit can be further
simplified by partitioning the scheduler entries between the execution units, so that
each execution unit is attached to its own scheduler. This distributed scheduler further
simplifies circuits but makes less efficient use of scheduler entries. Because there are
multiple schedulers that are sized independently, a distributed scheduler has a larger
design space to search.

The rest of this section describes our design of a compacting-matrix-based dis-
tributed scheduler for use in a two-issue superscalar x86 soft processor that has four
different execution units. We compare the IPC between unified and distributed de-
signs, choose capacities for each scheduler in a distributed design, then present area
and cycle time results of the four-way distributed scheduler circuit.

7.1. Unified vs. Distributed Scheduler
A unified scheduler has a single pool of instructions from which ready operations are
chosen, while distributed schedulers use one private scheduler per execution unit. Uni-
fied schedulers make more efficient use of scheduler entries because the relative de-
mand for each execution unit varies dynamically, and a distributed scheduling scheme
stalls the pipeline whenever any of its schedulers are full even if not all schedulers are
full.

However, circuits for unified schedulers are slower than distributed, as each execu-
tion unit’s selection logic must search the entire pool of waiting instructions rather
than just the scheduler attached to its own execution unit [Brown et al. 2001]. The
wakeup logic is similar for both distributed and unified designs: every executed in-
struction must broadcast to every scheduler entry.

For our x86 design using complex micro-ops, another complexity of using unified
schedulers is the required peak enqueue throughput. Renaming and issuing two micro-
ops per cycle into the schedulers can produce up to 6 independently scheduled opera-
tions (2 micro-ops, each with a load, arithmetic, and store). With a distributed sched-
uler, these 6 operations are guaranteed to be distributed among at least three different
schedulers, so each scheduler only needs to enqueue up to 2 operations per cycle. Using
a unified scheme would require the unified scheduler to enqueue up to 6 operations per
cycle.

For circuit complexity reasons, we prefer a distributed scheduler design. However,
we still wish to know the IPC cost of choosing a distributed design. A proper compari-
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son requires exploring the distributed scheduler design space, which will be discussed
in the next section. Figures 9 and 12(b) show the final results on two different bench-
mark sets. The charts show that distributed schedulers need more total entries to
achieve the same IPC (e.g., 20 unified and 32 distributed entries have similar IPC).

7.2. Tuning the distributed scheduler
Our processor has four execution units (branch and complex operations, integer arith-
metic, address generation and loads, and store-data), so a distributed scheduler has
four independently-sized components, one for each execution unit. Because each ex-
ecution unit is specialized for a particular operation type, some of which occur more
frequently than others, it is not immediately obvious how to determine the size of each
component that maximizes performance for a given total size. Thus, we need to search
the four-dimensional design space, then use the results to guide how each individual
scheduler should be sized.

It is easy to measure the IPC for unified schedulers as there is only a single parame-
ter (total capacity), but a distributed scheduler has, for us, 4 independent size param-
eters. If we limit the maximum total scheduler size to 64 entries, the design space con-
tains just under half a million design points, each requiring simulation. To make this
search tractable, we explored the design space using a randomized search, optimizing
for maximum IPC at each total scheduler capacity. This is of course a simplified cost
function, as it omits details such as cycle time (which is also influenced by the largest
scheduler component and not just the total capacity) and that some operation types
cost more than others (e.g., stores do not need to wake up dependents). For each de-
sign point, we obtained IPC using a cycle-level simulation with a reduced benchmark
set, which consists of 279 million instructions taken from five benchmarks: Dhrystone
(70M instructions), Mibench (dijkstra 41M and mad 27M), and SPECint2000 (gzip
70M, mcf 70M). This is a reduction from the workload of 25 billion instructions used
in the rest of the paper.

14



0 8 16 24 32 40 48 56 64
0

5

10

15

20

25

30

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ALU
Branch+Complex
AGU
Store
IPC

Scheduler Total Capacity (entries)

S
ub

-c
om

po
ne

nt
 c

ap
ac

ity
 (

en
tr

ie
s)

IP
C

Fig. 10. Best four-component distributed scheduler parameters vs. total scheduler capacity

We first coarsely explored the design space (points where component sizes differ by
a multiple of 4, 3060 points). Then, for each scheduler size, we pick several design
points at random, strongly skewed toward the best points for that size, and create
a new design point for each by perturbing its four parameters randomly. We repeat
this process until we were satisfied that the search space was adequately explored. In
total, we explored 10 635 points using 150 CPU-days, or about 2% of the total design
space of 487 635 points. Figure 9 shows the IPC of every design point we simulated.
Points closer to the pareto-optimal curve are more densely explored. Also plotted on
the chart for comparison is the performance of unified schedulers on the same reduced
benchmark set. As expected, unified schedulers achieve the same IPC with fewer total
entries.

To use this data to guide how to size each scheduler component, we take a sub-
set of the data points (only the top-performing three points) at each total size from
Figure 9 and examine the four parameters that produced each data point. The four
lines in Figure 10 show the average size of the sub-scheduler used by each execution
unit type (y-axis) for each total capacity (x-axis) of the distributed scheduler. The IPC
of this subset of data points is also plotted again for reference. Not surprisingly, the
best schedulers do not have equally-sized components. However, the relative sizes of
the four schedulers do not match their relative utilization (17%, 35%, 37%, 11% for
Branch/Complex, integer ALU, AGU, and stores, respectively). Perhaps most surpris-
ing is that branch/complex operations “prefer” scheduler sizes similar to the integer
ALU, despite being utilized only half as often. We speculate this is a side effect of our
processor design that executes branches and some complex operations in-order, which
causes operations to occupy the scheduler longer than a fully out-of-order ALU would.

For the remainder of this section, we choose the sizes of each scheduler component
based on a linear fit to the portion of the plot with less than 40 total entries. The portion
greater than 40 entries behaves somewhat erratically, likely because random noise
dominates when the schedulers have more entries than required to achieve maximum
IPC.
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To verify that our reduced benchmark set was reasonably representative of the full
25-billion instruction workload, we simulated scheduler sizes from 8 through 64 on our
full benchmark set, using our linear-fit rule for sizing each execution unit’s scheduler.
Figure 12(a) shows these results. Figure 12(b) compares this 4-way distributed sched-
uler with the IPC of a 4-way unified scheduler (from Figure 1) and also to a single-issue
out-of-order processor with a 1-way unified scheduler. Two-issue (with 4-way schedul-
ing) superscalar execution has a large 70% IPC increase over single-issue, but requires
larger schedulers to achieve that performance, while a single-issue out-of-order proces-
sor is largely insensitive to scheduler capacity. Single-issue performs better for very
small schedulers due to a side effect of our design: The scheduler is considered “full”
if there are not enough free entries to accommodate the worst-case output from the
renamer, which is 6 operations for dual-issue but 3 operations for single-issue (thus, a
dual-issue processor effectively loses 2–3 scheduler entries compared to a single-issue
processor).

7.3. Proposed Scheduler Microarchitecture
In addition to supporting multiple issue with a distributed scheduler as discussed in
the preceding section, we also extended our scheduler to implement details of our tar-
get instruction set (x86), such as supporting different instruction types (e.g., arithmetic
vs. load), more source operands per operation (up to 3), and different register types
(e.g., general-purpose vs. condition codes).

Our processor can decode, rename, and commit two complex micro-ops per cycle, and
has at most 64 micro-ops in flight (reorder buffer size). Each complex micro-op is then
broken up into up to three operations (load, arithmetic, store) that are executed by four
different types of execution unit, with a peak execution throughput of four operations
per cycle. Deciding on the overall processor issue width and arrangement of execution
units is outside the scope of instruction scheduler design. Each scheduler (one per ex-
ecution unit) can enqueue at most two operations per cycle, and select and dispatch
one operation per cycle. In aggregate, the four schedulers can enqueue 6 operations
(two complex micro-ops with three operations each) and select and dispatch 4 opera-
tions per cycle (one of each type). Figure 11 shows a high-level schematic of how our
four-component distributed scheduler is built out of smaller matrix scheduler circuits.

Unlike for a single-issue processor, the wakeup matrix for each scheduler is much
wider than it is tall, as each entry in the scheduler can wait for operands arriving from
any scheduler, but the aggregate dimensions of the wakeup matrix is roughly square.
It is not precisely square because stores do not wake up any dependent instructions,
as they only write data into the store queue.

To help with cycle time, we relaxed the wakeup latency from our earlier assumption
of single-cycle latency for some of the less critical paths. Complex ALU operations
and memory loads never complete in a single cycle, so the branch/complex and AGU
schedulers do not need single-cycle wakeup of its dependents. We also added an extra
cycle for operands going to the branch/complex ALU.

According to Figure 12(a), schedulers with greater than 32–40 entries are wasteful,
while those much smaller than 16 have large IPC losses. The final choice of scheduler
capacity in the range of 16–32 entries depends on other factors such as the frequency
target of the processor and the area budget.

7.4. Circuit Design
At this point, we have decided that we should build a distributed scheduler with four
sub-schedulers of different sizes (Figure 11). We chose to build the scheduler from four
compacting matrix scheduler circuits. This design draws from lessons learned from
both the fused-logic and matrix schedulers discussed earlier in Section 4.
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Fig. 11. Block diagram of a 4-way compacting matrix distributed scheduler. Each cluster can be a different
size. Stores do not need to wake up dependent operations.

A compacting matrix uses wakeup and selection logic found in a matrix scheduler,
but tracks instruction age by compaction as used by fused-logic scheduler instead of
an age matrix. This design attempts to work around shortcomings in each design.

We saw in Figure 8 (Section 6.2) that the matrix scheduler using an age matrix had
higher delay than the fused-logic scheduler. The same figure also suggested that much
of the disadvantage for the age-based matrix scheduler may have been the use of an
age matrix, as a matrix scheduler without the age matrix (random priority) had lower
delay. The choice of using matrix wakeup logic is due to its more straightforward design
making it easier to extend to allow more source operands and multiple wakeups per
cycle. The fused-logic wakeup logic’s use of a counter to count the number of remaining
operands becomes problematic because the number of dependencies in our x86-based
micro-ops can be up to 3, and up to three dependencies can be satisfied each cycle
(instead of one), which complicates the counter circuit. Extending the counter design
will add at least one LUT logic level to the critical path. In contrast, no changes need
to be made to the matrix scheduler’s wakeup logic to support more source operands
or multi-issue. Using a compacting matrix circuit design attempts to gain some of
the fused-logic design’s speed (by using compaction instead of an age matrix) without
inheriting its extra complexity (by using the simpler matrix wakeup logic).

Like all matrix schedulers, we need preprocessing logic to map source register num-
bers to its producer operation’s location in the matrix scheduler. We use an array of
one-hot bits to indicate which scheduler operation produces a given logical (not phys-
ical) register. Because querying this mapping happens in-program-order partially in
parallel with register renaming, we can map logical registers directly to scheduler
location. This produces a smaller mapping table because there are fewer logical regis-
ters than physical registers. This mapping table compacts along with the compaction
of scheduler entries. The preprocessing logic is a substantial portion of the scheduler
(about 60% of the scheduler’s area), and is a significant disadvantage of matrix-based
designs. All of our fmax and area numbers include this overhead.
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7.5. Circuit Results
We synthesized distributed schedulers from size 8 through 64 for a Stratix IV FPGA,
where the component sizes were determined following the guideline from Section 7.1.
Figure 13 plots the area and delay of these designs. Area and fmax results are the
median of 50 random seeds.

In Figure 13(a), the cycle time of the CAM and matrix (random priority) are plot-
ted again (from Figure 8) for comparison. One interesting observation is that the
distributed multi-issue scheduler has a slightly faster cycle time than a single-issue
scheduler of the same total capacity, because a distributed scheduler’s individual com-
ponents are smaller. For example, the 32-entry distributed scheduler has components
of at most 10 entries each (10, 10, 7, 5) that operate in parallel.

The area of the multi-issue scheduler is substantially greater, as seen in the plot
of area per scheduler entry in Figure 13(b). For comparison, the area per entry of
single-issue CAM and matrix (random) circuits (from Figure 7(b)) are also plotted.
A large contributor to this increase is the need to map up to 16 (instead of 2) source
operands per cycle to the scheduler entry of the instruction that produced the register’s
value. The wakeup and select logic area alone is similar to the single-issue fused-logic
scheduler and slightly higher than the matrix (random priority) due to the addition of
compaction.

As mentioned in the previous section, 16–32 scheduler entries is a reasonable range
to build from an IPC perspective. Using our compacting matrix circuit results in fre-
quencies of 325–280 MHz (faster than single-issue schedulers of the same size) and
area of 1750–3750 ALM (substantially worse than a single-issue scheduler).

7.6. Overall Performance
Figure 14 combines the IPC (Figure 12(a)) and cycle time (Figure 13(a)) results into
a single plot, showing the trade-off between IPC and frequency. The curved grid lines
mark instruction throughput in MIPS, which is the product of IPC and frequency in
MHz. Each point on the plot shows the IPC and frequency for the scheduler of a par-
ticular capacity. For example, the 17-entry scheduler has 0.83 IPC, 324 MHz, and 268
MIPS, while a 32-entry scheduler achieves almost the same throughput (264 MIPS)
but does so with a higher IPC (0.95) and lower frequency (279 MHz). While these two
design points have similar overall performance, the latter is easier to build as it im-
poses a less stringent timing constraint on the rest of the processor.

There is a fairly large region with similar MIPS between 14 and 33 entries (275–347
MHz, 0.95–0.76 IPC, 260–275 MIPS). This may allow a fairly large range of designs
to suit the frequency target of the rest of the processor without major performance
compromises. Of course, larger schedulers do incur a higher area cost.

We expect soft processor designs to have frequencies toward the lower end on this
chart, as the Nios II/f only runs at 240 MHz [Altera 2015] on a Stratix IV FPGA, and
we expect a more complex out-of-order processor would not be able to exceed the Nios
II/f ’s frequency by much. A lower processor frequency target suggests the use of larger,
higher IPC schedulers, and motivates more area-efficient designs even if it means some
frequency loss for the instruction scheduler.

8. COMPARISONS TO PREVIOUS WORK ON FPGAS
Direct comparisons with prior work are difficult to make due to differences in sched-
uler microarchitecture, but the approximate comparisons can still demonstrate our im-
provements. In most cases, to match the chip used in prior work, we re-synthesized our
scheduler circuits on a different Altera FPGA than the one our circuits were designed
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Fig. 12. IPC comparison between 4-way unified, 4-way distributed, and 1-way unified schedulers.

for. Our instruction scheduler circuits achieve faster cycle times than schedulers in the
literature, in some cases by substantial amounts.

8.0.1. Single-issue CAM. Aasaraai and Moshovos [Aasaraai and Moshovos 2010] pre-
sented a design space exploration of traditional single-issue CAM schedulers on Stratix
III FPGAs. The microarchitecture of their scheduler circuits match well with our CAM
(single issue, compacting age-priority, two operands) allowing for a reasonably fair
comparison. On the same Stratix III FPGA, we achieve higher frequencies with our
CAM scheduler circuit (+40% at 16 entries). Matrix and fused-logic matrix schedulers
get additional gains (+47% and +60% at 16 entries, respectively).

It is interesting that Aasaraai and Moshovos recommend using a small 4-entry
scheduler because they observe less than 10% change in IPC on their single-issue out-
of-order processor between 2 and 32 entries. We also observed insensitivity of IPC to
scheduler size for single-issue designs, but dual-issue demands a much larger sched-
uler (Figure 12(b)), which makes the ability to build high-capacity schedulers impor-
tant.

8.0.2. Dual-issue CAM and Matrix. Johri compared two-issue CAM and matrix sched-
ulers on FPGAs [Johri 2011]. Our single-issue schedulers achieved twice the frequency
at 16 entries for both CAM and matrix schedulers, but they use 3 source operands per
instruction on a Virtex-6, while we use 2 source operands per instruction on a Stratix
IV.

8.0.3. OpenRISC OPA. The OpenRISC OPA out-of-order processor merges the reorder
buffer (ROB) and scheduler into a single unit, allowing some circuit simplifications and
good fmax [Terpstra 2015]. On the same Arria V FPGA, our fused-logic matrix scheduler
in isolation achieves about 30% higher frequency than their complete processor at
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both 18 and 27 entries. Its main drawback is that a merged ROB and scheduler is
wasteful of scheduler capacity. Schedulers only need to be 30–50% of the ROB size
with almost no loss in IPC, which is also seen in our processor design with 64 ROB
entries (Figure 1(a)).

8.0.4. Combined ROB and Scheduler. Rosière et al. presented a combined ROB and
scheduler [Rosière et al. 2012]. The microarchitecture appears highly unbalanced, with
a large (128–512 entry) ROB, but only the oldest few instructions (4–16) are considered
for scheduling. On a Virtex-5, they reported slow fmax (4.7× slower than our fused-logic
matrix at 16 entries), and did not report absolute IPC numbers.

8.0.5. Non-Broadcast Scheduler. SEED is a scheduler designed to avoid broadcast be-
haviour [Mesa-Martı́nez et al. 2006]. On the same Stratix II FPGA, our fused-logic
matrix scheduler achieves 1.9–2.4× higher fmax over their broadcast-free scheduler,
and 6.5–5.5× higher fmax over their baseline, an Alpha 21264-like compacting CAM
scheduler, for 16 to 64 entries.

9. FUTURE WORK
There has been much processor microarchitecture research that improves on the
fundamental scheduler circuits. Most of these proposals still use the same circuit
structures at their core, but trade some amount of IPC to improve area, speed, or
power [Sassone et al. 2007; Ernst and Austin 2002; Kim and Lipasti 2003; Chen and
Hsiao 2007; Palacharla et al. 1997; Canal and González 2000; Michaud and Seznec
2001; Brown et al. 2001; Stark et al. 2000]. The majority of these techniques can still
be used on FPGA designs.

While this work aimed for, and achieved, a high speed multi-issue scheduler design,
this came with a fairly high area cost. For processors where clock frequency is less
critical, whether to reduce area use for less aggressive designs or for more aggressive
designs that target higher IPC (and larger schedulers) at lower clock speeds, CAM-
based schedulers deserve further exploration for use in multi-issue distributed sched-
ulers. CAM-based schedulers may still be fast enough for a processor with a modest
frequency target, potentially at a significant area savings.

10. CONCLUSIONS
We compared optimized circuit structures used in broadcast-based instruction sched-
ulers. We also presented an improved age-based fused-logic matrix circuit that is faster
at age-based scheduling than traditional CAM- or matrix-based schedulers (∼20%
faster at 22–36 entries, or twice the capacity at 240 MHz), yet is functionally equiva-
lent. Our careful circuit implementations are substantially faster (∼1.4–6×) than prior
work.

Our results show that moderately-aggressive out-of-order soft processors with
single-issue schedulers of up to 40 entries are feasible on FPGAs at no frequency loss
compared to the small, simple, highly-optimized Nios II/f.

For multi-issue processors, we explored the design space of a 4-way distributed
scheduler, and demonstrated that a 6-enqueue/4-dequeue distributed scheduler for
complex x86 micro-ops runs at a higher frequency than a single-issue scheduler for
simpler two-operand instructions of the same total capacity, achieving 240 MHz for
schedulers with up to 54 entries.

The IPC and performance benefit of out-of-order processors is expected to be large, on
the order of 2× for a first implementation, and opens the door to even more aggressive
designs in the future.
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