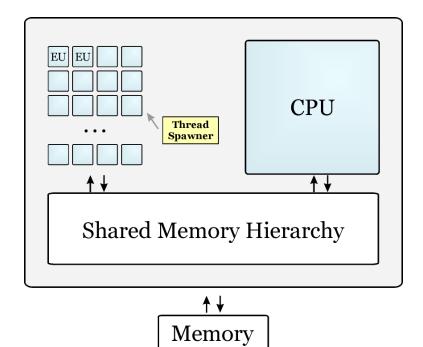


Pangaea: A Tightly-Coupled Heterogeneous IA32 Chip Multiprocessor


Henry Wong¹, Anne Bracy², Ethan Schuchman², Tor M. Aamodt¹, Jamison D. Collins², Perry H. Wang², Gautham Chinya², Ankur Khandelwal Groen³, Hong Jiang⁴, Hong Wang² henry@stuffedcow.net, anne.c.bracy@intel.com

¹Dept. Of Electrical and Computer Engineering, University of British Columbia ²Microarchitecture Research Lab, Microprocessor Technology Labs, Intel Corporation ³Digital Enterprise Group, Intel Corporation ⁴Graphics Architecture, Mobility Groups, Intel Corporation

1 Parallel Architectures and Compilation Techniques, October 27, 2008

Pangaea

- Integrates IA32 CPU with GPU cores
- Improved area/power efficiency
- Tighter integration
- Modular design

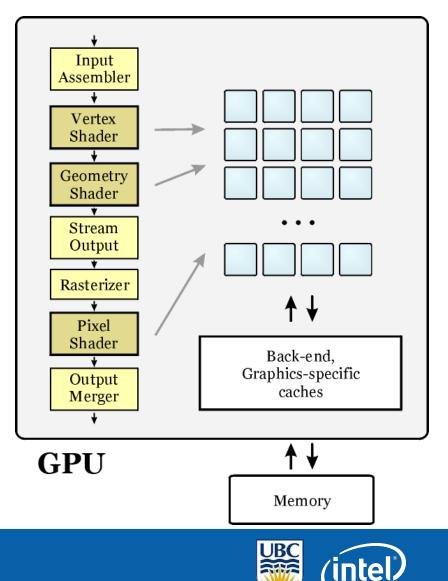
Motivation

- GPUs have low Energy Per Instruction
 - $\sim 100x$ less EPI than CPU
 - Parallel performance too
 - Pangaea targets non-graphics computation for further efficiency gains
- Tightly-coupled
 - easier to program
 - lower communication latency
- Minimize changes to existing software (OS)

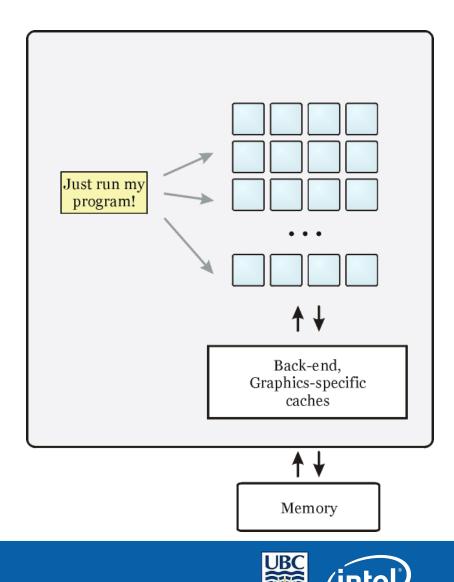
Overview

- Background on GPU Computation
- Pangaea: IA32-GPU chip multiprocessor
 - User-Level Interrupt mechanism
 - Architecture trade-offs
 - Prototype performance
- Conclusion

Programmable GPU

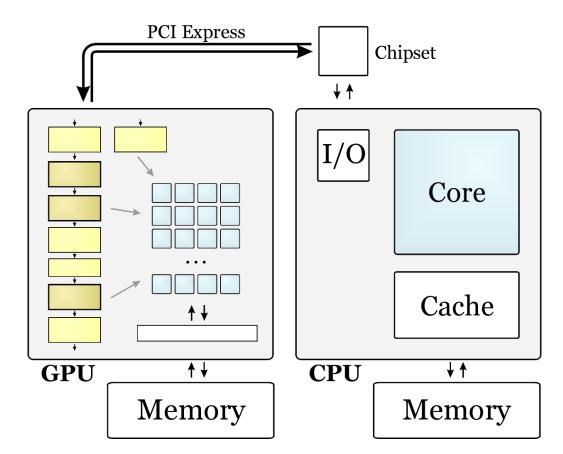

- Rendering pipeline
 - Polygons go in
 - Pixels come out
- DX10 has 3 programmable stages

Fixed Graphics Pipeline Stage



Programmable Graphics Pipeline Stage

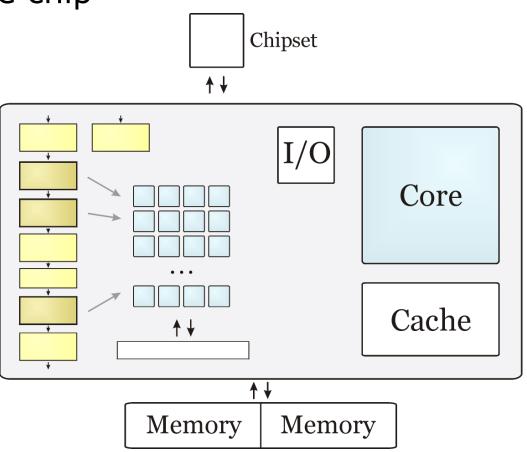
Nvidia CUDA, AMD Stream


- Use shader processors without graphics API
- C-like high-level language for convenience

6

GPU + CPU

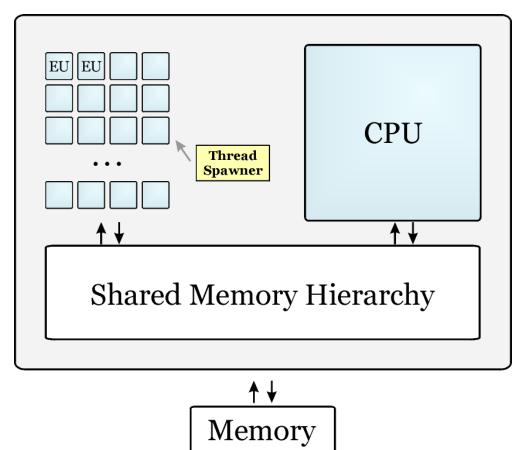
- Loosely-coupled to the CPU
 - Off-chip latency
 - Explicit data copy between memory spaces
 - Cooperation?



GPU Integration

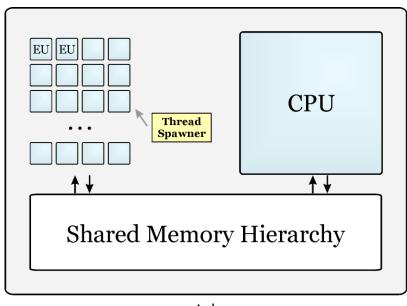
• Put them on the same chip

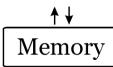
- Off-chip latency
- Explicit data copy between memory spaces
- Cooperation??



Pangaea

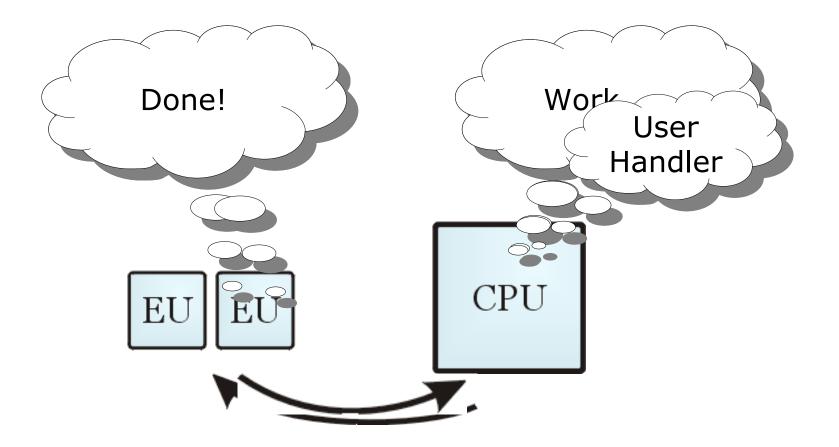
• Single-chip, tightly-coupled


- Off-chip latency
- Shared memory address space:
 Share, not copy
- Cooperation!



Pangaea Architecture

- Tightly-integrated
 - User-level interrupts (ULI) for communication
 - Shared memory and cache
- Use GPU cores for compute
 - "Execution Unit" (EU)



Overview

- Background on GPU Computation
- Pangaea: IA32-GPU chip multiprocessor
 - User-Level Interrupt mechanism
 - Architecture trade-offs
 - Prototype performance
- Conclusion

EU Thread Life Cycle

User-Level Interrupts (ULI)

• EMONITOR

- Watches for an address invalidation
- Calls user interrupt handler in response
- ERETURN
 - Returns from user-level interrupt handler

• SIGNAL

- Tells Thread Spawner to start new thread.

Using ULI – CPU Code

ł

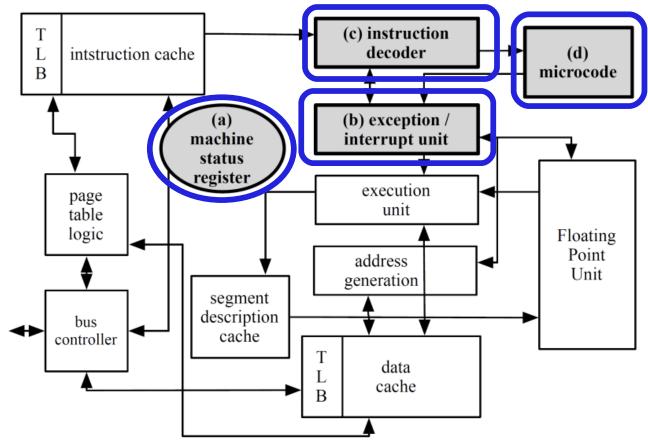
}

task_complete = false; EMONITOR(&task_complete, &handler); SIGNAL(&eu_routine, &eu_data);

{ Do some work }

Using ULI – EU Code

{
 Do some work;
 task_complete = true;
}



Using ULI – User Handler

```
handler() {
    if (task_complete) {
        Use EU result or start EU task
    }
    ERETURN();
}
```

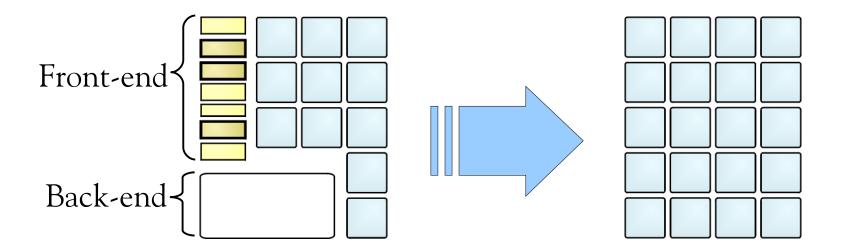

ULI Pipeline Modifications

In Slitentie begüttetes

Accompany sing the first full of the first state of

Overview

- Background on GPU Computation
- Pangaea: IA32-GPU chip multiprocessor
 - User-Level Interrupt mechanism
 - Architecture trade-offs
 - Prototype performance
- Conclusion


Shared Memory Hierarchy

- Shared address space
 - Address Translation Remapping: CPU handles memory translation when EU TLB misses
 - See Perry Wang, et al., EXOCHI: Architecture and Programming Environment for a Heterogeneous Multi-core Multithreaded System
- Shared memory hierarchy
 - Share a cache with the CPU
 - Helps collaborative multithreading
 - Avoids copying data between CPU and GPU

Area/Power Efficiency

- Graphics pipeline area is 9.5 cores
 - 65 nm synthesis of Intel GMA X4500
- Power is 4.9 cores
- Replace graphics pipeline with Thread Spawner
 - Thread Spawner is tiny: 1% of core

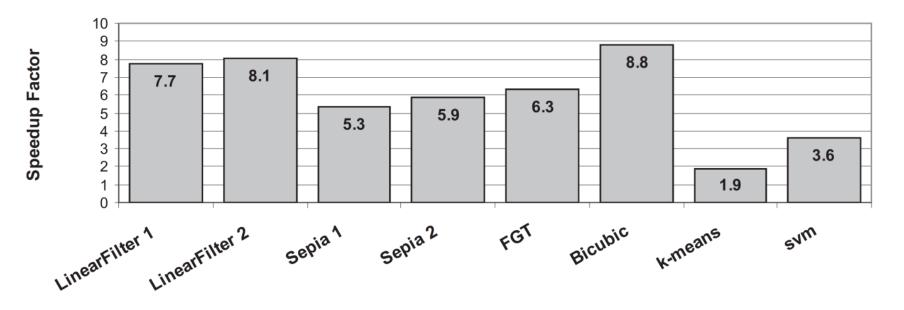
Overview

- Background on GPU Computation
- Pangaea: IA32-GPU chip multiprocessor
 - User-Level Interrupt mechanism
 - Architecture trade-offs
 - Prototype performance
- Conclusion

Pangaea Prototype

- Synthesis of production-quality RTL code
 - 2-issue, in-order IA32 CPU (37% of design)
 - 2 EUs from Intel GMA X4500 (31% x 2)
- Virtex 5 LX330, 136772 LUTs, 17 MHz
 - 66% of LX330
- Boots Linux, Windows, DOS, ...

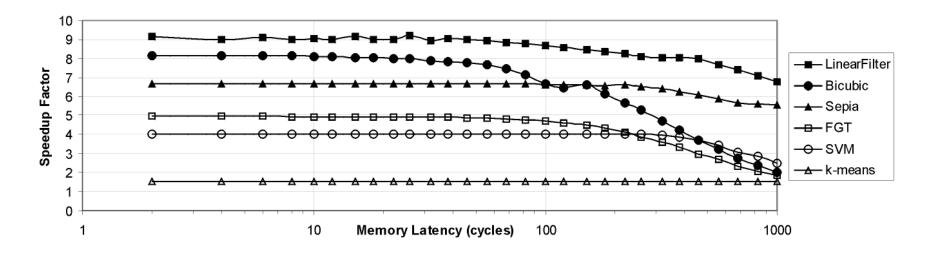
Thread Spawn Latency


GPGPU		Pangaea	
3D pipeline	~ 1500	Bus interface	11
Thread Dispatch	15	Thread Dispatch	15
Total	~ 1515	Total	26

Thread Spawn latency reduced by 60x when bypassing graphics pipeline

– GPGPU driver software overhead not included

Throughput Performance



2 EUs vs. 1 CPU

- k-means and svm collaborate with CPU
- k-means is CPU-bound

Latency Sensitivity

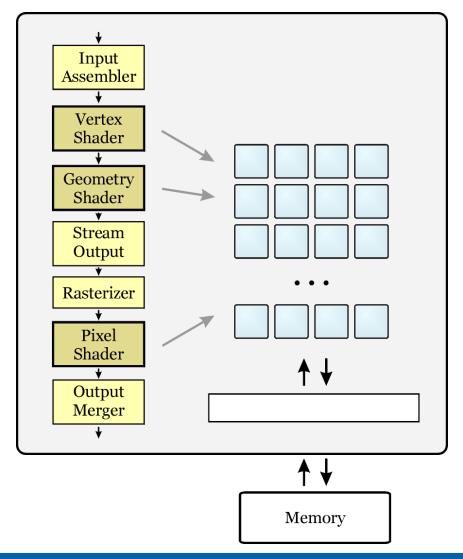
- Bicubic and FGT code larger than 4KB i-cache
- k-means is CPU-bound
- Insensitive to memory latency $< \sim 60$ cycles
 - Can trade off level of memory hierarchy to share

Conclusions

- Added ULI communication to IA32, built on cache coherency mechanisms
 - Modularity allows scalable design
- Shared memory and cache is good for ease of programming and collaboration
 - Highest-performance implementation not critical
- Legacy graphics takes up 9.5 EUs of area, 4.9 EUs of power. Remove if not necessary.
 - Prototype shows it is ok to remove

Conclusions

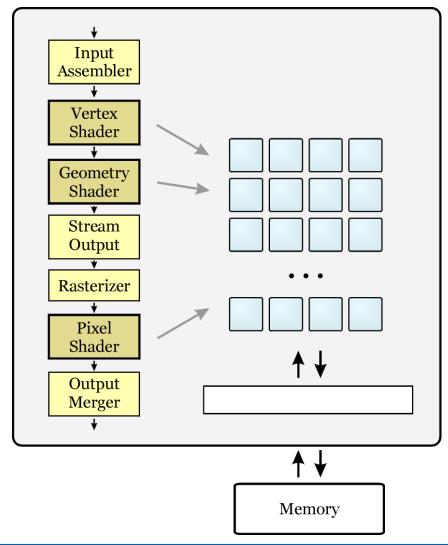
- IA32 ULI built on cache coherency mechanisms enables scalable, modular design
- Shared memory and cache is good for ease of programming and collaboration
- Legacy graphics fixed functions have high overhead



EU vs. CPU Peak Throughput

- 2 EUs have 2x peak performance vs. CPU
- TLP increases utilization (92% vs. 65%, linear)
- Large register file (57% vs. 7.4% memory, bicubic)
- Multiply-accumulate (55% of bicubic)
- SIMD-8/16 instructions lowers instruction count

Shaders


- For each vertex, run a program.
 - ... or each pixel
- Program instances mutually independent
- Shaders designed to run many independent instances of the same short program

GPGPU

- For each _____, run a program.
- Write shader programs to do something nongraphics
- Sparse matrix solvers, linear algebra, sorting algorithms...
- Brook for GPUs

Other Stuff from Intel MRL

- Papers
 - Multiple Instruction Stream Processor
 - EXOCHI: Architecture and Programming Environment for a Heterogeneous Multi-core Multithreaded System
- Ideas
 - User-level "sequencer" so OS isn't modified
 - Let CPU handle exceptions on behalf of "sequencer"
 - Shared memory space for ease of programming
- Pangaea can be thought of as extension of Exo

Pangaea Resource Usage

- 2-issue, in-order IA32 CPU
- 2 EUs from Intel GMA X4500
- Virtex 5 LX330, 136772 LUTs, 17 MHz

	LUTs	Registers	Block RAMs	DSP48 blocks
IA32 CPU	50621	24518	118	24
EU Subsystem	84547	36170	67	64
Other	1604	591	91	2

Table 2.2: Virtex-5 FPGA Resource Usage for the Pangaea configuration in Table 2.1.

Earlier Pangaea Prototype

- 1 CPU, 1 EU, 256 kB memory
- Virtex 4 LX200, 130352 4-LUTs, 17.5 MHz

	LUTs	Registers	Block RAMs	DSP48 blocks
x86 CPU	68949	27136	118	29
EU subsystem	59245	21189	32	40
Other	2158	634	129	1

