
11

Pangaea: A Tightly-Coupled
Heterogeneous IA32 Chip

Multiprocessor
Henry Wong1, Anne Bracy2, Ethan Schuchman2, Tor M. Aamodt1, Jamison

D. Collins2, Perry H. Wang2, Gautham Chinya2,
Ankur Khandelwal Groen3, Hong Jiang4, Hong Wang2

henry@stuffedcow.net, anne.c.bracy@intel.com

1Dept. Of Electrical and Computer Engineering, University of British Columbia
2Microarchitecture Research Lab, Microprocessor Technology Labs, Intel Corporation

3Digital Enterprise Group, Intel Corporation
4Graphics Architecture, Mobility Groups, Intel Corporation

Parallel Architectures and Compilation Techniques, October 27, 2008

Pangaea. PACT 200822

Pangaea

• Integrates IA32 CPU with GPU cores
• Improved area/power efficiency
• Tighter integration
• Modular design

Pangaea. PACT 200833

Motivation

• GPUs have low Energy Per Instruction
– ~100x less EPI than CPU
– Parallel performance too
– Pangaea targets non-graphics computation for further

efficiency gains

• Tightly-coupled
– easier to program
– lower communication latency

• Minimize changes to existing software (OS)

Pangaea. PACT 200844

Overview

• Background on GPU Computation
• Pangaea: IA32-GPU chip multiprocessor

– User-Level Interrupt mechanism
– Architecture trade-offs
– Prototype performance

• Conclusion

Pangaea. PACT 200855

Programmable GPU

• Rendering pipeline
– Polygons go in
– Pixels come out

• DX10 has 3 programmable
stages

Pangaea. PACT 200866

Nvidia CUDA, AMD Stream

• Use shader processors
without graphics API

• C-like high-level language
for convenience

Pangaea. PACT 200877

GPU + CPU

• Loosely-coupled to the CPU
– Off-chip latency
– Explicit data copy

between memory
spaces

– Cooperation?

Pangaea. PACT 200888

GPU Integration

• Put them on the same chip
– Off-chip latency
– Explicit data copy

between memory
spaces

– Cooperation??

Pangaea. PACT 200899

Pangaea

• Single-chip, tightly-coupled
– Off-chip latency
– Shared memory

address space:
Share, not copy

– Cooperation!

Pangaea. PACT 20081010

Pangaea Architecture

• Tightly-integrated
– User-level interrupts (ULI) for communication
– Shared memory and cache

• Use GPU cores for compute
– “Execution Unit” (EU)

Pangaea. PACT 20081111

Overview

• Background on GPU Computation
• Pangaea: IA32-GPU chip multiprocessor

– User-Level Interrupt mechanism
– Architecture trade-offs
– Prototype performance

• Conclusion

Pangaea. PACT 20081212

EU Thread Life Cycle

SignalWork...Work...Done!
User

Handler

Pangaea. PACT 20081313

•EMONITOR
– Watches for an address invalidation
– Calls user interrupt handler in response

•ERETURN
– Returns from user-level interrupt handler

•SIGNAL
– Tells Thread Spawner to start new thread.

User-Level Interrupts (ULI)

Pangaea. PACT 20081414

Using ULI – CPU Code

{
 task_complete = false;
 EMONITOR(&task_complete, &handler);
 SIGNAL(&eu_routine, &eu_data);

 { Do some work }
}

Pangaea. PACT 20081515

Using ULI – EU Code

{
 Do some work;

 task_complete = true;
}

Pangaea. PACT 20081616

Using ULI – User Handler

handler() {
 if (task_complete) {
 Use EU result or start EU task
 }
 ERETURN();
}

Pangaea. PACT 20081717

ULI Pipeline Modifications

Channel registers
Maps scenario (address) to user handler

Instruction Decoder
Accept new EMONITOR, ERETURN, SIGNAL instructions

Interrupt unit
Support for user-level interrupts
Microcode
New instruction flows and interrupt flow

Pangaea. PACT 20081818

Overview

• Background on GPU Computation
• Pangaea: IA32-GPU chip multiprocessor

– User-Level Interrupt mechanism
– Architecture trade-offs
– Prototype performance

• Conclusion

Pangaea. PACT 20081919

Shared Memory Hierarchy

• Shared address space
– Address Translation Remapping: CPU handles memory

translation when EU TLB misses
– See Perry Wang, et al., EXOCHI: Architecture and

Programming Environment for a Heterogeneous Multi-core
Multithreaded System

• Shared memory hierarchy
– Share a cache with the CPU
– Helps collaborative multithreading
– Avoids copying data between CPU and GPU

Pangaea. PACT 20082020

Area/Power Efficiency

• Graphics pipeline area is 9.5 cores
– 65 nm synthesis of Intel GMA X4500

• Power is 4.9 cores
• Replace graphics pipeline with Thread Spawner

– Thread Spawner is tiny: 1% of core

Front-end

Back-end

Pangaea. PACT 20082121

Overview

• Background on GPU Computation
• Pangaea: IA32-GPU chip multiprocessor

– User-Level Interrupt mechanism
– Architecture trade-offs
– Prototype performance

• Conclusion

Pangaea. PACT 20082222

Pangaea Prototype

• Synthesis of production-quality RTL code
– 2-issue, in-order IA32 CPU (37% of design)
– 2 EUs from Intel GMA X4500 (31% x 2)

• Virtex 5 LX330, 136772 LUTs, 17 MHz
– 66% of LX330

• Boots Linux, Windows, DOS, ...

Pangaea. PACT 20082323

Thread Spawn Latency

Thread Spawn latency reduced by 60x when
bypassing graphics pipeline

– GPGPU driver software overhead not included

Pangaea. PACT 20082424

Throughput Performance

2 EUs vs. 1 CPU
– k-means and svm collaborate with CPU
– k-means is CPU-bound

Pangaea. PACT 20082525

Latency Sensitivity

• Bicubic and FGT code larger than 4KB i-cache
• k-means is CPU-bound
• Insensitive to memory latency < ~60 cycles

– Can trade off level of memory hierarchy to share

Pangaea. PACT 20082626

Conclusions

• Added ULI communication to IA32, built on cache
coherency mechanisms
– Modularity allows scalable design

• Shared memory and cache is good for ease of
programming and collaboration
– Highest-performance implementation not critical

• Legacy graphics takes up 9.5 EUs of area, 4.9 EUs
of power. Remove if not necessary.
– Prototype shows it is ok to remove

Pangaea. PACT 20082727

Conclusions

• IA32 ULI built on cache coherency mechanisms
enables scalable, modular design

• Shared memory and cache is good for ease of
programming and collaboration

• Legacy graphics fixed functions have high overhead

Pangaea. PACT 20082828

Questions?

Pangaea. PACT 20082929

EU vs. CPU Peak Throughput

• 2 EUs have 2x peak performance vs. CPU
• TLP increases utilization (92% vs. 65%, linear)
• Large register file (57% vs. 7.4% memory, bicubic)
• Multiply-accumulate (55% of bicubic)
• SIMD-8/16 instructions lowers instruction count

Pangaea. PACT 20083030

Shaders

• For each vertex, run a
program.
– ...or each pixel

• Program instances
mutually independent

• Shaders designed to run
many independent
instances of the same
short program

Pangaea. PACT 20083131

GPGPU

• For each _____, run a
program.

• Write shader programs to
do something non-
graphics

• Sparse matrix solvers,
linear algebra, sorting
algorithms...

• Brook for GPUs

Pangaea. PACT 20083232

Other Stuff from Intel MRL

• Papers
– Multiple Instruction Stream Processor
– EXOCHI: Architecture and Programming Environment for a

Heterogeneous Multi-core Multithreaded System

• Ideas
– User-level “sequencer” so OS isn't modified
– Let CPU handle exceptions on behalf of “sequencer”
– Shared memory space for ease of programming

• Pangaea can be thought of as extension of Exo

Pangaea. PACT 20083333

Pangaea Resource Usage

• 2-issue, in-order IA32 CPU
• 2 EUs from Intel GMA X4500
• Virtex 5 LX330, 136772 LUTs, 17 MHz

Pangaea. PACT 20083434

Earlier Pangaea Prototype

• 1 CPU, 1 EU, 256 kB memory
• Virtex 4 LX200, 130352 4-LUTs, 17.5 MHz

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

