
11

Pangaea: A Tightly-Coupled 
Heterogeneous IA32 Chip 

Multiprocessor
Henry Wong1, Anne Bracy2, Ethan Schuchman2, Tor M. Aamodt1, Jamison 

D. Collins2, Perry H. Wang2, Gautham Chinya2,
Ankur Khandelwal Groen3, Hong Jiang4, Hong Wang2

henry@stuffedcow.net, anne.c.bracy@intel.com

1Dept. Of Electrical and Computer Engineering, University of British Columbia
2Microarchitecture Research Lab, Microprocessor Technology Labs, Intel Corporation

3Digital Enterprise Group, Intel Corporation
4Graphics Architecture, Mobility Groups, Intel Corporation

Parallel Architectures and Compilation Techniques, October 27, 2008



Pangaea. PACT 200822

Pangaea

• Integrates IA32 CPU with GPU cores
• Improved area/power efficiency
• Tighter integration
• Modular design
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Motivation

• GPUs have low Energy Per Instruction
– ~100x less EPI than CPU
– Parallel performance too
– Pangaea targets non-graphics computation for further 

efficiency gains

• Tightly-coupled 
– easier to program
– lower communication latency

• Minimize changes to existing software (OS)
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Overview

• Background on GPU Computation
• Pangaea: IA32-GPU chip multiprocessor

– User-Level Interrupt mechanism
– Architecture trade-offs
– Prototype performance

• Conclusion
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Programmable GPU

• Rendering pipeline
– Polygons go in
– Pixels come out

• DX10 has 3 programmable 
stages
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Nvidia CUDA, AMD Stream

• Use shader processors 
without graphics API

• C-like high-level language 
for convenience



Pangaea. PACT 200877

GPU + CPU

• Loosely-coupled to the CPU
– Off-chip latency
– Explicit data copy 

between memory 
spaces

– Cooperation?
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GPU Integration

• Put them on the same chip
– Off-chip latency
– Explicit data copy 

between memory 
spaces

– Cooperation??
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Pangaea

• Single-chip, tightly-coupled
– Off-chip latency
– Shared memory 

address space: 
Share, not copy

– Cooperation!



Pangaea. PACT 20081010

Pangaea Architecture

• Tightly-integrated
– User-level interrupts (ULI) for communication
– Shared memory and cache

• Use GPU cores for compute
– “Execution Unit” (EU)
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EU Thread Life Cycle

SignalWork...Work...Done!
User

Handler
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•EMONITOR
– Watches for an address invalidation
– Calls user interrupt handler in response

•ERETURN
– Returns from user-level interrupt handler

•SIGNAL
– Tells Thread Spawner to start new thread.

User-Level Interrupts (ULI)



Pangaea. PACT 20081414

Using ULI – CPU Code

{
  task_complete = false;
  EMONITOR(&task_complete, &handler);
  SIGNAL(&eu_routine, &eu_data);

  { Do some work }
}
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Using ULI – EU Code

{
  Do some work;

  task_complete = true;
}
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Using ULI – User Handler

handler() {
  if (task_complete) {
    Use EU result or start EU task
  }
  ERETURN();
}
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ULI Pipeline Modifications

Channel registers
Maps scenario (address) to user handler

Instruction Decoder
Accept new EMONITOR, ERETURN, SIGNAL instructions

Interrupt unit
Support for user-level interrupts 
Microcode
New instruction flows and interrupt flow
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Shared Memory Hierarchy

• Shared address space
– Address Translation Remapping: CPU handles memory 

translation when EU TLB misses
– See Perry Wang, et al., EXOCHI: Architecture and 

Programming Environment for a Heterogeneous Multi-core 
Multithreaded System

• Shared memory hierarchy
– Share a cache with the CPU
– Helps collaborative multithreading
– Avoids copying data between CPU and GPU
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Area/Power Efficiency

• Graphics pipeline area is 9.5 cores
– 65 nm synthesis of Intel GMA X4500

• Power is 4.9 cores
• Replace graphics pipeline with Thread Spawner

– Thread Spawner is tiny: 1% of core

Front-end

Back-end
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Pangaea Prototype

• Synthesis of production-quality RTL code
– 2-issue, in-order IA32 CPU (37% of design)
– 2 EUs from Intel GMA X4500 (31% x 2)

• Virtex 5 LX330, 136772 LUTs, 17 MHz
– 66% of LX330

• Boots Linux, Windows, DOS, ...
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Thread Spawn Latency

Thread Spawn latency reduced by 60x when 
bypassing graphics pipeline

– GPGPU driver software overhead not included
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Throughput Performance

2 EUs vs. 1 CPU
– k-means and svm collaborate with CPU
– k-means is CPU-bound
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Latency Sensitivity

• Bicubic and FGT code larger than 4KB i-cache
• k-means is CPU-bound
• Insensitive to memory latency < ~60 cycles

– Can trade off level of memory hierarchy to share
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Conclusions

• Added ULI communication to IA32, built on cache 
coherency mechanisms
– Modularity allows scalable design

• Shared memory and cache is good for ease of 
programming and collaboration
– Highest-performance implementation not critical

• Legacy graphics takes up 9.5 EUs of area, 4.9 EUs 
of power. Remove if not necessary.
– Prototype shows it is ok to remove
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Conclusions

• IA32 ULI built on cache coherency mechanisms 
enables scalable, modular design

• Shared memory and cache is good for ease of 
programming and collaboration

• Legacy graphics fixed functions have high overhead
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Questions?
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EU vs. CPU Peak Throughput

• 2 EUs have 2x peak performance vs. CPU
• TLP increases utilization (92% vs. 65%, linear)
• Large register file (57% vs. 7.4% memory, bicubic)
• Multiply-accumulate (55% of bicubic)
• SIMD-8/16 instructions lowers instruction count
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Shaders

• For each vertex, run a 
program.
– ...or each pixel

• Program instances 
mutually independent

• Shaders designed to run 
many independent 
instances of the same 
short program
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GPGPU

• For each _____, run a 
program.

• Write shader programs to 
do something non-
graphics

• Sparse matrix solvers, 
linear algebra, sorting 
algorithms...

• Brook for GPUs
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Other Stuff from Intel MRL

• Papers
– Multiple Instruction Stream Processor
– EXOCHI: Architecture and Programming Environment for a 

Heterogeneous Multi-core Multithreaded System

• Ideas
– User-level “sequencer” so OS isn't modified
– Let CPU handle exceptions on behalf of “sequencer”
– Shared memory space for ease of programming

• Pangaea can be thought of as extension of Exo
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Pangaea Resource Usage

• 2-issue, in-order IA32 CPU
• 2 EUs from Intel GMA X4500
• Virtex 5 LX330, 136772 LUTs, 17 MHz
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Earlier Pangaea Prototype

• 1 CPU, 1 EU, 256 kB memory
• Virtex 4 LX200, 130352 4-LUTs, 17.5 MHz
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