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1. INTRODUCTION
The ability to trade area for performance in a soft processor, beyond current soft proces-
sor performance levels, would allow designers to implement more functionality in the
easier-to-use software environment. The ever-increasing logic capacity of FPGAs has
made area much cheaper, but there has been no way to exchange this for increased soft-
ware performance as soft processors have largely remained simple in-order designs.

As current commercial soft processors already achieve (for FPGAs) high clock fre-
quencies, future performance gains must come from instructions-per-cycle (IPC) in-
creases. There is compelling data from the evolution of hard processor microarchitec-
tures that support the idea that there are significant performance gains to be had when
moving from in-order to out-of-order processors, which we show in Table I. Each row
in Table I is a specific microarchitecture/vendor, and illustrates the net performance
benefit of the transition from in-order to out-of-order. As these processors are built
in different process technologies and the processors run at different frequencies, the
performance increases due to frequency increases are factored out. Hence, the table
shows the IPC improvement due to the transition, and this is significant in every case
— ranging from 1.6 to 2 times on SPECint (95 or 2006).

Many believe that processor performance improvements derived from out-of-order
architectures only occur when the latency to memory is well above 100 or more pro-
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Table I. Comparison of SPECint scores between in-order and out-of-order processors and frequency-
normalized ratio

Vendor SPECint
Version

In-order Out-of-Order IPC Ratio
Processor Score Processor Score

MIPS [SPEC 2000] 95 R5000
180 MHz

4.8 R10000
195 MHz

11.0 2.1

Alpha [SPEC 2000] 95 21164
500 MHz

15.0 21264
500 MHz

27.7 1.9

Intel [SPEC 2000] 95 Pentium
200 MHz

5.5 Pentium Pro
200 MHz

8.7 1.6

Intel [Kuttanna 2013] 2006 Atom
S1260
2 GHz

7.4 Atom
C2730
2.6 GHz

15.7 1.6

cessor cycles with multi-gigahertz processor core frequencies. In direct contradiction
to that, one can observe in Table I that significant IPC gains are seen on earlier out-
of-order microprocessors with sub-200 MHz clock frequencies in which the memory
latency (in processor cycles) is not much higher than in today’s FPGA-based soft pro-
cessors.

In addition, a soft processor that can execute one of the most widely-used instruction
sets in the world would be useful to execute a very wide variety of pre-compiled soft-
ware, and serve as a basis for research into processor microarchitecture and system-
level architectural modifications. For these reasons we have embarked on the design
and implementation of a x86 compatible, out-of-order, superscalar soft processor. We
aim to achieve large IPC gains and minimal clock frequency loss, at a now-modest area
target of around 40 000 ALMs.

In this paper we focus on a key part — the memory subsystem — and study trade-
offs in the cache design, out-of-order memory execution, and memory disambigua-
tion [Moshovos 1997]. Many aspects of the design are applicable to non-x86 systems
as well. Also, because our scope includes creating the ability to boot modern general-
purpose operating systems, the memory system must support virtual memory, includ-
ing paging and translation lookaside buffers (TLBs). This influences many of the trade-
offs, and increases the complexity of the system. We also discuss FPGA circuit-level
considerations and the detailed circuit design of our two-way associative TLB and
cache lookup, showing that careful design resulted in a circuit faster than the sim-
pler TLB and direct-mapped cache access in the Nios II/f.

In this study, we use detailed cycle-level processor simulation to evaluate the impact
in IPC of the various processor microarchitecture features. Compared to the simple
in-order memory systems with one level of cache that are currently used in soft pro-
cessors, we evaluate the impacts of a second level of caching, speculative out-of-order
memory execution, and non-blocking cache miss handling. We then design highly-
tuned circuits that implement all of the above features while correctly handling un-
aligned accesses and other requirements of a uniprocessor x86 system.

This work demonstrates that large increases in IPC (up to 2.1× on SPECint2000)
can be achieved through improvements in the memory and caching system alone —
even with a conservative 30-cycle memory latency — on top of the IPC provided by out-
of-order instruction execution. It also demonstrates that the hardware that delivers
this IPC and the features to support general-purpose OSes can be built at a reasonable
resource usage (14 000 equivalent ALMs) at high frequency (200 MHz), which is faster
than most in-order soft processors and within 17% of the 240 MHz Nios II/f.

This paper is organized as follows: we discuss related work in Section 2, the require-
ments of the memory system in Section 3, the methodology of design, simulation and
benchmarking in Section 4, a summary of the microarchitecture of the processor in
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Section 5 and the structure of the memory system in Section 6. Section 7 explores
the trade-offs in the memory system microarchitecture, while Sections 8 through 10
describe circuit level design trade-offs, optimization, and synthesized results.

2. RELATED WORK
The microarchitectural dimensions explored in this paper are not new, as they traverse
a long and distinguished history of processor architecture [Hennessy and Patterson
2003]. Our focus is in part on how to bring that knowledge into the soft processor space,
and to deal with the realities of processors that boot real operating systems. Most ex-
isting soft processors are relatively small and employ simple, single-issue pipelines,
including commercial soft processors (Nios II [Altera 2015], MicroBlaze [Xilinx 2014])
and non-vendor specific synthesizable processors that target both FPGA and ASIC
technologies (Leon 3 [Gaisler 2015], Leon 4 [Gaisler 2015], OpenRISC OR1200 [Lam-
pret ], BERI [Woodruff 2014]). The vendor-specific commercial processors are tuned for
high frequencies (e.g., 240 MHz for Nios II/f vs. 150 MHz for Leon 3 and 130 MHz for
OR1200, all on the same Stratix IV FPGA).

The memory systems of all of these in-order processors stall the processor pipeline
whenever a cache miss occurs. A key issue explored in this paper is the effect of al-
lowing the processor to proceed when one or more cache misses occur. The RISC-V
Rocket [Lee et al. 2014] is notable for using a non-blocking cache with an in-order
pipeline. The RISC-V project also has an out-of-order synthesizable core (BOOM) with
an out-of-order non-blocking cache system, but does not appear to be designed for
FPGAs [Celio et al. 2015]. BERI [Woodruff 2014] is particularly interesting in that
it implements the MIPS instruction set well enough to boot the FreeBSD OS. It uses
a two-level cache hierarchy, but to our knowledge there is no published analysis of the
trade-offs involved in their cache hierarchy, such as the one we present in this paper.

A non-blocking cache for soft processors was proposed in [Aasaraai and Moshovos
2010]. They use an in-cache Miss Status Holding Register (MSHR) scheme that tracks
outstanding memory requests in the cache tag RAM to avoid associative searches. We
avoid this scheme because the port limitations and high latency of FPGA block RAMs
(particularly for writes) make an in-cache implementation difficult and slow. Instead,
we use a small number (4) of MSHRs, which results in a small and fast associative
search, while giving up almost no IPC (Section 7.1).

Another performance-enhancing aspect of our memory system that is not found in
current soft processor memory systems is out-of-order execution, including memory
disambiguation (determining data dependencies between stores and loads) and mem-
ory dependence speculation [Moshovos 1997]. Conventional designs use associatively-
searched load queues and store queues to perform store-to-load forwarding and mem-
ory disambiguation. Previous work has explored both conventional and newer non-
associative schemes for use by FPGA soft processors [Wong et al. 2013]. Despite being
slower and less area-efficient, we chose to use the conventional disambiguation scheme
to reduce risk, as to our knowledge, the more efficient schemes have not yet been fully
proven in an x86 design.

There have been previous projects that synthesized modern x86 processors into
FPGAs [Lu et al. 2007; Wang et al. 2009; Schelle et al. 2010]. However, these pro-
cessors were not designed for FPGA implementation, so they tend to be much larger
and slower (ranging from 0.5 to 50 MHz operating frequency) than processors designed
with an FPGA target in mind. We intend to achieve a much higher operating frequency
(>200 MHz) in the processor described here.
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3. MEMORY SYSTEM REQUIREMENTS
A memory system performs memory accesses for both instruction fetches and data
loads and stores. A bootable system with virtual memory requires both paging support
and coherence between various memory and I/O transactions. This, together with a
goal of high performance, makes the memory system design complex. In this section
we describe the requirements of the memory system imposed by the x86 instruction
set architecture, and those requirements arising from the goal of high performance.

The instruction set architecture specifies many properties of the memory system.
Due to the x86 instruction set’s long legacy, it tends to keep complexity in hardware to
improve software compatibility. The key features of a uniprocessor x86 memory system
include the following:

(1) Paging is supported, with hardware page table walks.
(2) 1, 2, and 4-byte accesses have no alignment restrictions. Accesses spanning page

boundaries are particularly challenging as they require two TLB and cache tag
lookups.

(3) Cacheability is controllable per-page. In particular, the UC (uncacheable) type dis-
allows speculative loads (typically used for memory-mapped I/O).

(4) Data and instruction caches (but not TLBs) are coherent, including with reads and
writes from I/O devices (e.g., DMA). Self-modifying code is supported.

A multiprocessor system also needs to obey the memory consistency model, which
we leave for future work.

In addition to the functionality requirements, our goal of building a high-
performance soft processor adds complexity to the memory system. Cache sizes and
latency play an important role in determining memory system performance. Cache
miss handling and out-of-order memory execution also greatly impact overall perfor-
mance by reducing pipeline stalls and increasing opportunities for finding overlapping
operations.

A simple blocking cache stalls memory operations when a cache miss occurs, and in
most in-order soft processors, this also stalls the entire processor. A non-blocking cache
continues to service independent requests rather than stalling. This is particularly
important for out-of-order processors that can find independent operations to execute.
The simplest non-blocking cache allows “hit under miss”, where cache hits are serviced
while waiting for a single cache miss to return; these caches will stall on a second miss.
This notion can be extended to support multiple outstanding misses using multiple
Miss Status Holding Registers (MSHR) to track the in-flight cache misses [Kroft 1981];
in this work we will explore the impact of a non-blocking cache and the number of
MSHRs to provide.

Memory dependence speculation also enhances performance. Simple memory sys-
tems execute load and store operations in program order. To execute them out of or-
der, the processor must know whether a load reads from a location written to by an
earlier in-flight store in order to know whether the load is dependent on the store.
However, this is difficult because load and store addresses are not known until af-
ter address generation (unlike register dependencies that are known after instruction
decoding). Non-speculative out-of-order memory systems allow limited reordering, as
long as loads only execute after all earlier store addresses are known. Memory depen-
dence speculation allows further reordering, but must detect misspeculations and roll
back if necessary [Moshovos 1997]. We will explore the impact of memory dependence
speculation in our memory system.
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4. METHODOLOGY AND BENCHMARKS
We are designing the processor in a three-step process: definition of the instruction
set, creation of a cycle-level model/simulator to evaluate microarchitectural design de-
cisions, and finally designing hardware to evaluate area and delay on an FPGA. The
microarchitecture design is done with an FPGA implementation in mind, including
modelling expected circuit latencies and choosing designs that can be efficiently imple-
mented. We then build the detailed circuits to show that the anticipated designs are
feasible at the expected frequency, with some iteration if microarchitecture changes
are needed to meet circuit frequency goals (e.g., extra pipeline stages). Finally, we per-
formed FPGA-specific circuit optimizations that provided significant delay improve-
ments.

We began by using the Bochs x86 full-system functional simulator [Lawton 1996].
To evaluate processor microarchitecture, we created a software model of a complete
out-of-order x86 core, including fetch, branch predictors, decode, cracking to micro-
ops, renaming, instruction scheduling, execution, and a coherent two-level memory
hierarchy including paging. The detailed core replaces Bochs’ CPU and executes within
Bochs’ simulation of the rest of the PC system. Functional verification was done by
comparing the result of committed instructions to a system with Bochs’ original CPU
model. We evaluated the processor by running a set of workloads consisting of user-
mode applications (on Linux) and booting various operating systems.

The level of detail of the software simulation is enough to describe cycle-by-cycle
behaviour of each pipeline stage (in a few places, at the level of logic equations). This
detail allows testing for correctness and provides a detailed functionality and cycle
timing specification from which to build hardware. Once satisfied with the correctness
and performance of the microarchitectural design, we implemented the memory hier-
archy in SystemVerilog targeting a Stratix IV FPGA. The hardware follows the same
cycle-by-cycle behaviour defined by the simulation.

4.1. Simulation Benchmarks
A key advantage of using the x86 instruction set is the wide availability of benchmark
programs, in both source and unmodified binary forms. We have simulated a wide
variety of workloads that we expect would have varying sensitivity to memory system
performance, and are listed in Table II. We discuss several aspects of these here.

The SPECint2000 suite stresses both the processor core and memory system, and
was simulated with the reference input, skipping two billion instructions then simu-
lating one billion. We only used the subset that did not have an excessive amount of
floating-point content because our processor only emulates floating point in firmware.
The mcf benchmark of the SPECint suite is particularly challenging for the memory
system, as it performs pointer chasing on a graph and has high cache miss rates [Jaleel
2007].

The MiBench benchmark suite has a fairly small memory footprint. It comes with
“small” and “large” input data sets. We used “small” inputs for all of the benchmarks
except stringsearch, and ran the benchmarks to completion. We omitted benchmarks
that contained an excessive amount of floating-point.

The Dhrystone and CoreMark benchmarks have minimal demands on the memory
system, with L1 data cache miss rates of around 0.02%.

Doom is a good example of a legacy x86 software program — a 3D first person shooter
game released in 1993. It uses 32-bit protected-mode but not paging, and has a sig-
nificant amount of self-modifying code. Surprisingly, this workload does not use any
floating-point.
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Table II. Benchmarks and x86 Instruction Counts

Workload x86 Inst.
(106)

Description

SPECint2000 20 000 gzip, gcc, mcf, crafty, parser, gap, vortex, bzip2
Excluded: eon, vpr, twolf, perlbmk

MiBench [Guthaus et al. 2001] 2 568

Automotive: bitcount, qsort, susan (edges, cor-
ners, smoothing)
Consumer: jpeg, mad, tiff2bw, tiffdither, diffme-
dian, typeset
Office: ghostscript, ispell, stringsearch
Network: patricia, dijkstra
Security: blowfish, pgp, rijndael, sha
Telecom: adpcm, crc32, gsm
Excluded: basicmath, lame, tiff2rgba, fft

Windows 98 600 DOS + 9x kernel
Windows XP 5 200 32-bit NT kernel
Windows 7 16 000 32-bit NT kernel
Mandriva Linux 2010.2 15 500 Desktop Linux OS (kernel 2.6.33)
FreeBSD 10.1 4 000 UNIX-like OS (no GUI)
ReactOS 0.3.14 1 600 Windows NT clone
Syllable Desktop 0.6.7 4 000 Desktop operating system
Dhrystone 260 200 000 iterations
CoreMark 247 600 iterations
Doom 1.9s 1 938 -timedemo demo3
Total 71 913

Finally, and most importantly, we also boot several x86 operating systems which
have a mix of user and system code. OS workloads measure the time from power-on
until the boot process is complete (desktop loaded or login screen).

5. PROCESSOR ARCHITECTURE AND MICROARCHITECTURE
Our processor’s x86 instruction set architecture (ISA) is based on Bochs’ Pentium
model [Lawton 1996]. We decided to eliminate the x87 floating point unit (FPU) to
reduce hardware design effort; since modern operating systems expect x87 support, it
was replaced with a new OS-invisible trap mechanism and emulation code in firmware.

The CPU microarchitecture is a typical single-threaded out-of-order design with in-
order front-end (fetch, decode, rename), out-of-order execution, and in-order commit.
The baseline configuration used in this paper is detailed in Table III and Figure 1.
The microarchitecture was chosen to be feasible to implement on an FPGA. The explo-
rations in this paper will consist of removing certain aspects or features of this baseline
architecture to see the net effect on performance.

We model main memory as a 30-cycle latency and throughput of one 32-byte access
per cycle, which translates to 150 ns and 6.25 GB/s with a CPU clock frequency of
200 MHz. While modern memory systems can have access times on the order of 50 ns,
we use a 150 ns latency to account for additional delays through the memory controller
and access contention that is not captured with this simple memory model.

6. MEMORY SYSTEM MICROARCHITECTURE
The memory system performs memory accesses and paging using separate instruction
and data L1 caches and TLBs, hardware page table walking, and a unified L2 cache.
The store and load queues enable out-of-order memory execution. The shaded portions
in Figure 1 show the memory system hardware components. The remainder of this
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Table III. Baseline System Configuration

Property Value
Fetch 8 bytes per cycle
Branch prediction 16K entry BTB, 16-entry return address stack
Decode 2 x86 instructions/cycle, 2 µops/cycle
Rename Integer, segment, and flags renamed, 2 µops/cycle
OoO 64-entry ROB, 8-entry scheduler per execution unit
Execution Units 1 Branch+complex, 1 ALU, 1 AGU, 1 Store data.
Store queue 16 entries
Load queue 16 entries
L1I 2-way, 8 KB, blocking
ITLB 2-way, 128-entry, 4 KB pages, blocking
L1D 3-cycle latency, 2-way, 8 KB, write-back, 4 MSHR
DTLB 2-way, 128-entry, 4 KB pages, 2 outstanding page walks

L2 4-way tree pseudo-LRU, 256 KB, 9-cycle load
latency, write-back, 8 outstanding misses

Memory 30 cycles (44 cycles as observed by the core, including
L1 miss, L2 miss, and queuing delays)
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Fig. 1. CPU Microarchitecture. This work focuses on shaded portions.

section describes these units in more detail; we note that the detail is terse due to
space constraints.

6.1. Instruction Fetch
Because instruction fetches happen in program order, the instruction memory hier-
archy is fairly straightforward. An 8 KB two-way virtually-indexed physically-tagged
(VIPT) instruction cache is looked up in parallel with a large 128-entry instruction
TLB.

6.2. Data loads
The L1 load pipeline (illustrated as the stack of shaded boxes with “Replay” at the
top in Figure 1) is very complex due to the need to support ISA features such as
cacheability control and unaligned operations, and performance-enhancing features
such as multiple outstanding loads [Kroft 1981] and out-of-order speculative execu-
tion [Moshovos 1997].
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The load pipeline is shown in more detail in the right half of Figure 2. After the
address generation unit (AGU) computes the linear (virtual) address for an operation,
address translation, cache lookup, and store queue lookup are done in parallel. Cache
hits are complete at this point, but the many possible failure conditions are handled by
a generic replay scheduler (stage 1), avoiding stalls until the replay scheduler is full.

To allow for multiple outstanding requests, we use four associatively-searched
MSHRs (miss status holding register) to track up to four outstanding cache lines.
Each MSHR entry holds information for one cache line and one outstanding load (the
primary miss) to that cache line. A miss to a cache line already in-flight (secondary
miss) is replayed and not sent to the coherence unit. This design allows multiple out-
standing misses to the same cache line, without the increased MSHR entry complexity
that would be needed if the MSHR were responsible for tracking multiple outstanding
loads, but at the expense of a higher latency for secondary misses due to replay. In
Section 7 we explore the effect of the quantity of MSHRs.

Memory dependence speculation [Moshovos 1997] allows loads to be executed with-
out waiting for all previous store addresses to be computed. Since most loads are not
dependent on an earlier store, a load is speculated to be independent of earlier stores
unless a dependence predictor indicates otherwise. We use a simple dependence pre-
dictor. All loads query a 32-entry direct-mapped tagged table indexed by instruction
pointer. A hit causes the load to be replayed and wait for earlier stores to execute.
Entries are created in the table to remember loads that caused a dependence misspec-
ulation in the past, and are never explicitly removed.

The store queue and load queue (SQ and LQ in Figure 1) are used to find depen-
dencies and dependence misspeculations, respectively. Loads search the store queue
for earlier dependent stores. If a load is found to be fully contained within an earlier
store, the store data is forwarded to the load. Stores search the load queue to find later
dependent loads that may have been incorrectly executed too early.

An unaligned memory accesses has no penalty unless it crosses cache line bound-
aries (“split”)1. Cacheable split loads (including split-page loads) are executed in two
consecutive cycles, doing one TLB lookup and tag check each cycle and reading the
data array for both lines on the second cycle.

From a design effort perspective, correctly implementing the combination of
cacheability control and split loads has been extremely painful, because all of these
features interact and produce a huge number of corner cases. For example, split-page
loads require two TLB lookups, each of which may miss or cause a page fault. In addi-
tion, if the load is uncacheable (UC), and if one TLB lookup misses or faults, the other
half-load must not be sent to main memory; discarding a speculative load result is not
sufficiently correct, since UC loads from memory-mapped I/O can have side effects.

6.3. L1 Data Cache
We chose a virtually-indexed, physically-tagged (VIPT) cache, which allows TLB and
cache lookups to proceed in parallel. This is possible if the cache index is unmodified
by address translation2 — in this case the lower 12 bits for 4 KB pages. Thus, paging
increases the latency penalty for building large L1 caches (making two-level caches
favourable), as increasing L1 cache size either increases associativity (and logic delay)
or increases latency by serializing the TLB and cache lookups (PIPT).

1While x86 is often maligned as unnecessarily complex, this complexity is often beneficial. For example,
unaligned accesses are enough of a win that the ARM ISA began supporting them with ARMv6 [ARM 2012].
2Alternatively, requiring the OS to compensate for the cache organization is so onerous that ARMv7 no
longer requires this for data caches [ARM 2012].
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6.4. Coherence Unit and L2 Cache
The coherence unit merges requests from 8 sources, most of which are shown in the
left hand side of Figure 2: L1D loads, L1D stores, L1D evictions, L1I reads, page table
walker, memory fill, I/O device-initiated requests (DMA), and I/O-space requests. The
coherence unit services requests, maintains coherence of all caches, and provides a
global ordering to satisfy memory consistency requirements.

The L2 cache uses a non-inclusive/non-exclusive (“accidental inclusion”) policy, so all
L1 cache tags are checked at every request. A second copy of all L1 cache tag arrays
is used for this purpose. A non-inclusive policy reduces complexity compared to an
inclusive policy by avoiding reverse invalidations when the L2 wishes to evict a line
that is also stored in at least one L1 cache.

6.5. TLB and Page Table Walker
The instruction and data TLBs are both 128-entry, two-way set-associative. Although
processors have often used higher-associativity or fully-associative TLBs, we believe
low-associativity TLBs are more suitable for FPGA processors. First, storage capacity
is reasonably cheap, so it is easier to reduce miss rates by increasing capacity rather
than associativity. Increasing cache capacity also reduces sensitivity to associativity.
Our large 128-entry L1 data TLB loses less than 1% IPC for two-way associativity
for SPECint2000. Second, using a low-associativity TLB and cache allows cache tag
comparisons to be overlapped with TLB tag comparisons, which has a large circuit
speed advantage, which we discuss in Section 9. Serializing the tag comparisons to
accommodate a higher-associativity (or fully-associative) TLB in the same latency and
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Fig. 3. Benchmarks: x86 IPC for out-of-order non-blocking baseline, in-order blocking cache, and in-order
blocking without L2 cache

cycle time would require the TLB lookup to complete in roughly one LUT delay (∼0.8 ns
on a Stratix IV), which is impossible to achieve, especially for higher-latency BRAM-
based CAMs (e.g., [Brelet and Gopalakrishnan 2002; Abdelhadi and Lemieux 2015]).
Small and fast (L1) caches cannot tolerate the slower CAM circuits, while larger, slower
caches are less sensitive to associativity.

A TLB miss results in a hardware page table walk, as required in the x86 archi-
tecture. The page walk accesses the two-level x86 page tables, making memory access
requests to the coherence unit, which can be cached by the L2 cache. The page table
walker is non-blocking, allowing up to three concurrent page walks and one outstand-
ing memory operation per page walk currently in progress. A table holds the current
state of each active page table walk, and services one ready page walk each cycle. This
is similar to a proposal for page table walking on GPUs [Power et al. 2014].

7. MICROARCHITECTURE SIMULATION RESULTS
This section evaluates the impact of some of the microarchitecture design choices de-
scribed in the previous section. We vary the microarchitecture against the baseline
architecture described in Table III, and compare its instructions-per-cycle (IPC) per-
formance using the cycle-level simulator and benchmarks described in Section 4. Note
that we do not measure the microarchitectural impact on frequency and area yet, but
leave those results to Section 10. Recall that the baseline processor and memory sys-
tem configuration has out-of-order execution, memory dependence speculation, multi-
ple outstanding data cache misses, and L1 and L2 caches.

The two major performance-related aspects of our memory system are non-blocking
speculative out-of-order execution of memory operations and the use of a two-level
cache hierarchy. Figure 3 shows a per-benchmark breakdown of IPC to evaluate the
impact of successively disabling these two performance features. The “blocking” config-
uration disallows out-of-order memory execution and speculation and stalls all mem-
ory operations during cache misses. The bottom bar shows the result of also disabling
the L2 cache. As noted in Section 2, most soft processors stall all instructions during a
cache miss. Our “blocking” memory configuration blocks only memory operations and
continues to allow non-memory operations to execute out-of-order (It is an out-of-order
processor with an in-order memory system), which is more aggressive than in-order
soft processors, even with comparable memory systems.

There is a lot of data in Figure 3; we will make some general observations followed
by more detailed ones. The chart shows that most workloads benefit from having a non-

10



blocking cache, particularly those with large working sets (e.g., SPECint’s mcf [Jaleel
2007]). Workloads with very small working sets (Coremark, Dhrystone) show no sen-
sitivity to removing the L2 cache, but still benefit from out-of-order execution of cache
hits. Overall, the benefit of a two-level non-blocking memory system are large (2.1×
IPC on SPECint2000). These large gains are seen even with our modest two-issue pro-
cessor and the smaller memory latencies seen on lower-clock speed FPGA processors.

The rest of this section looks at the benefits of non-blocking caches and a two-level
cache hierarchy in more detail.

7.1. Non-blocking, Out-of-Order Cache
Figure 4 breaks down the contribution to performance of the non-blocking and out-of-
order speculative properties of the cache, for a total of four design points. The chart
compares the IPC of blocking and non-blocking caches with and without speculative
out-of-order memory execution to a blocking in-order cache.

Of these four design points, three have been used by processors in practice: block-
ing in-order, non-blocking in-order, and non-blocking out-of-order. The blocking out-of-
order design point is impractical because store-to-load forwarding must still be non-
blocking to avoid deadlock, because a load can depend on an earlier store which de-
pends on an even earlier load (a dependency carried through memory). This configura-
tion would have nearly all of the complexity of a non-blocking memory system but none
of the benefits of a non-blocking cache and TLB.

We modelled the four design points using our non-blocking out-of-order design by
disabling features. In practice, each design point would use a different memory execu-
tion pipeline structure, but we expect the IPC difference between the two approaches to
be minor. Starting with a non-blocking out-of-order design, we model in-order memory
systems by admitting memory operations into the memory system in program order,
while continuing to allow memory operations to execute and complete in any order.
In-order blocking behaviour is modelled by blocking the execution of all memory oper-
ations whenever a memory operation does not complete for any reason (e.g., TLB miss,
cache miss, store-to-load forward not ready), while the out-of-order blocking configu-
ration blocks on TLB and cache misses only but allows store-to-load forwarding to be
non-blocking to avoid deadlock.

Out-of-order speculative execution benefits all workloads, while non-blocking caches
disproportionately benefit workloads with more cache misses. We expect in-order pro-
cessors (like existing soft processors) to benefit less from a non-blocking cache because
in-order processors must stall as soon as an unavailable memory value is used, limiting
the amount of useful independent operations that can be found.

Figure 5 examines the benefit of multiple outstanding loads in more detail, by vary-
ing the number of outstanding loads permitted before stalling (which is the number of
MSHRs, described in Section 6). Allowing just one outstanding load (hit-under-miss)
is enough to get most of the performance benefit for most workloads. Workloads that
are sensitive to memory performance (SPECint, booting OSes) continue to see im-
provement with more outstanding loads, with diminishing returns. Only one workload
(SPECint2000’s mcf) benefits from more than our baseline of four outstanding loads.

The large gains for memory dependence speculation and multiple outstanding loads
make both techniques important for a high-performance soft processor. The low area
cost of MSHRs (Table IV) makes it practical to build the four MSHRs needed to capture
most of the available performance.
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Fig. 4. IPC impact of non-blocking and out-of-order memory execution (256 KB L2, 4 MSHR entries). A
blocking out-of-order memory system is an impractical design. Pink and dark green bars correspond to bars
of the same colour in Figure 3.

7.2. Two-Level Cache Hierarchy
We saw in Figure 3 that simply disabling the L2 cache can have a large performance
impact. This section examines cache sizes in more detail, and whether using larger L1
cache sizes has similar performance to two-level hierarchies.

Figure 6 shows the impact of varying the L1 cache size with and without a 256 KB L2
cache. These results are optimistic for L1 cache sizes larger than 8 KB, as we increased
L1 cache size without accounting for any extra latency that would be needed to access
the larger caches. The instruction and data L1 cache sizes are increased together, from
4 KB 1-way to 256 KB 32-way. In this chart, left-to-right slope shows sensitivity of IPC
to L1 cache size, while the size of the blue portion of the bars indicate sensitivity to the
presence of a 256 KB L2 cache.

Unsurprisingly, workloads that fit in a small L1 cache (Dhrystone, Coremark) do
not benefit from a larger L1 cache nor L2 cache. For the other workloads, adding a
second-level cache makes performance less sensitive to L1 cache size.

Since the modelled L1 cache latency (3 cycles) is lower than L2 (9 cycles), one might
expect a large L1 cache to perform better than a two-level hierarchy with a small 8 KB
L1 (In Figure 6, a yellow bar greater than 1.0). However, a two-level hierarchy with
8 KB L1 and 256 KB L2 caches performs similarly to using large and unrealistic single-
level 256 KB L1 caches (512 KB total). The reason is because page tables are cached
in the L2 cache and page walks become far more expensive (by about 65 cycles for
two page table memory accesses) when the L2 cache is removed. The slower TLB miss
handling time has a significant impact on performance even with low TLB miss rates
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(e.g., SPECint2000 has 1.8 page walks per thousand instructions). We already use
large 128-entry TLBs, so improving paging performance to compensate for removing
the L2 cache would be difficult, likely requiring the complexity of a two-level TLB
hierarchy and page walk caches.

For the workload that does not use paging (Doom), the effect of slower page table
walks does not apply. However, Doom uses self-modifying code, which requires cache
lines to be transferred between the instruction and data caches. We do not allow direct
L1I to L1D cache line transfers nor most cases of cache line sharing, so self-modifying
code causes L1 cache misses that become more expensive when there is no unified L2
cache.

The presence of paging makes a two-level cache hierarchy preferable, due to the
increased latency (for translation or high associativity) of a larger L1 cache, and the
benefit of a unified L2 cache being able to cache page table walks.

8. FPGA MEMORY SYSTEM DESIGN
The IPC benefits from an out-of-order memory system described in the previous sec-
tion can be translated into performance benefits only if the required circuits can be
built to run at a high frequency with low latency. This requires both designing the
microarchitecture with the FPGA substrate in mind and careful circuit design.

Due to the high effort required to design memory system hardware, we built hard-
ware only for the highest-performing non-blocking out-of-order memory system. As
the various configurations typically require complete hardware redesigns, simply dis-
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Fig. 6. L2 Cache: Relative IPC for varying L1 cache sizes with and without a 256 KB L2 cache.

abling functionality as done in Section 7 gives reasonable IPC estimates but does not
result in reasonable hardware designs.

This section briefly discusses FPGA-specific design considerations for each hardware
unit. We then present detailed circuit-level design and optimization techniques used by
the TLB and cache access stage (DTLB, L1D, and SQ blocks in Figure 1) in Section 9.

Our overriding goal of correctly supporting x86 features, flaws, corner cases, and
legacy code complicates the design trade-off space. In addition to the traditional met-
rics of performance (IPC and frequency) and cost (FPGA resources), this “correctness”
requirement constrains the design space and makes design effort an important design
goal that can be traded for performance and/or cost.

8.1. L1 Data Cache
While microarchitectural-level cache design concerned sizes and latency, FPGA circuit-
level design also needs to consider the cost of RAM block read and write ports, to avoid
needing more ports than provided by a block RAM. The design of the L1 cache data
array needs to service four types of requests:

(1) Loads (32-bit read, unaligned, read both ways)
(2) Stores (32-bit write, unaligned)
(3) Evictions to L2 (256-bit read, aligned)
(4) Fills from L2 (256-bit write, aligned)
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As cache data arrays are large, they need to be designed to fit the characteristics of
the FPGA block memories. Each FPGA block memory has two read-write ports (2rw),
but the available port width is doubled when used in single port (1rw) or simple dual
port mode (1r1w). Our high-frequency (and low-latency) requirements preclude time-
multiplexing (double-pumping) the memory block, while the large size makes it desir-
able to use the memory block in its most area efficient 1r1w mode.

A straightforward implementation of two-way associativity duplicates the data array
and selects the correct way for each access. However, it is wasteful to duplicate the wide
fill and eviction ports as only one line is filled or evicted at a time. Our design, shown
in Figure 7(a), shares a read port between loads and evictions, and shares a write port
between stores and fills. This arrangement uses the FPGA dual-ported block RAMs
in simple dual-port mode and supports two-way associativity without replication, and
separates the high-traffic load and store interfaces on separate physical ports to reduce
the IPC impact of contention (Loads and stores occur more frequently than evictions
and fills). To avoid duplicating the wide fill and eviction ports, the lower and upper
16 bytes of alternating cache lines are swapped. This arrangement satisfies all four
types of requests. Fills and evictions can access any one (possibly swapped) full cache
line by accessing both halves with the same address. Loads can access the same offset
from both ways of the cache by reading both halves but with one address incremented
or decremented. Independent control of the block memory read addresses even allows
reads that cross into the next cache line to be accessed the same way. This scheme can
be extended to caches of higher associativity.

We chose a cache geometry of 8 KB, two-way associativity, with 32 byte cache lines.
This is the result of many competing design goals, including IPC, area, delay, ISA
constraints, and design effort. The following are some of the less obvious trade-offs we
needed to consider:

— Cache hit latency: A virtually-indexed physically tagged (VIPT) organization re-
duces cache hit latency over PIPT by doing address translation and cache lookup in
parallel instead of sequentially.

— ISA constraint: x86 caches must behave like PIPT, so VIPT caches must have at
most 4 KB/way (page size) or extra alias-detection logic used during cache misses.

— Design effort: We chose the lower-effort option: 4 KB/way, but this makes large
caches more difficult due to high associativity.

— Design effort: Coherence unit should transfer whole cache lines in one cycle, to avoid
the complexity of multiple-cycle transfers.

— Area: Transferring full cache lines makes cache port widths and coherence unit mul-
tiplexer sizes equal to cache line size. Smaller cache lines reduce area, but increase
the cache tag RAM array depth (which is 4 KB/line size).

— Delay: A tag array no deeper than 64 is ideal. MLAB LUT RAMs are faster than
the larger M9K block RAMs, and MLABs with depth greater than 64 require slow
soft-logic multiplexers to stitch them together.

Our chosen geometry reduces hit latency with a two-way, 4 KB/way VIPT design,
without alias detection logic. Its small capacity is partially compensated by a large
256 KB L2 cache. The 32-byte cache line size is a compromise between using 256-bit
(32 byte) multiplexers in the coherence unit and a depth-128 (4 KB/32 B) cache tag
array. The extra multiplexer needed to stitch two depth-64 MLAB blocks together was
implemented reasonably efficiently by merging it into the cache tag comparator using
7-input LUTs (See Section 9).
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Fig. 7. L1 Cache Data RAM Arrays and Interleaving

8.2. L1 Instruction Cache
The L1 instruction cache, shown in Figure 7(b), is derived from the data cache, with the
same VIPT structure. Since the instruction cache is read-only, it omits the store port
and eviction port. It also does not need to support unaligned reads, as all instruction
fetches are aligned 8-byte reads. Thus, the instruction cache only has load and fill
interfaces, and can use mixed port widths to reduce multiplexing.

8.3. Coherence Unit and L2 cache
As shown in Figure 2, the coherence unit has many data paths that connect the output
of block RAMs to the input of other block RAMs. This occurs both for tag checks feeding
the data array’s read address, and to allow copying a cache line from one cache to
another. Due to the block memories’ large setup times, long read latency, and routing
delay, these paths have been problematic for delay. To mitigate this, there are two
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Fig. 8. Circuit-level design of L1 Data TLB and cache access stage

cycles dedicated to tag checks, and a cycle dedicated mostly to routing delays (stage 5
in Figure 2), but the coherence unit remains the most timing-critical block.

As mentioned in Section 8.1, we used cache-line sized buses throughout the coher-
ence unit to reduce design effort at the expense of area. The bandwidth provided is
more than necessary, so future designs can use multi-cycle transfers to save area.

9. DETAILED DESIGN OF THE L1 TLB, CACHE, AND STORE QUEUE
The TLB, store queue, and cache access stage is one of the more complex parts of the
memory system. It is nearly timing critical3, and has been carefully optimized. This
stage must determine whether a given virtual address (A[31:0] in Figure 8) hits in the
L1 data cache and returns the data if there is a hit. This involves address translation
using the TLB, cache access and data selection, and a store queue search to find de-
pendencies on earlier stores to overlapping addresses. It must also correctly handle a
variety of corner cases. Section 6.2 and stage 2 of Figure 2 described the functionality
in more detail.

9.1. High-Level Circuit Structure
The general circuit design principle is well-known: try to do as many operations in
parallel as possible. Using a VIPT organization allows the TLB and cache lookups
to be performed in parallel. As FPGAs do not have wired-OR logic, comparators are
built using trees of LUTs and are relatively slow. Therefore, we also parallelize the tag
comparison logic by performing all pairwise cache tag comparisons with physical frame
numbers (PFNs), then selecting the result after the TLB tag comparison is known. The
store queue lookup also occurs in parallel as it uses only the lower 12 bits of the address
that is not affected by address translation4. The four-entry MSHR search also occurs
in this cycle, but is small and non-critical, so we do not discuss it further. To support
unaligned accesses, the cache data has a 32-to-1 multiplexer to allow each output byte
to select any byte from the 32-byte cache line. The first 16-to-1 selection is independent

3The coherence unit is currently more critical by 6%.
4This optimization trades a small IPC loss for a large circuit-level improvement. It causes “4 KB aliasing”
stalls also seen in other processors.
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of address translation and cache hit/miss status, and is done in parallel. Only the final
2-to-1 way selection depends on the result of the TLB and cache tag comparisons.

The result of this parallelization is our design in Figure 8. The delays of several im-
portant paths are labelled on the diagram. This is a two-way associative TLB lookup, a
two-way associative cache lookup, and unaligned data selection, in 5 LUT logic levels
and 4.29 ns on a Stratix IV FPGA. For comparison, the Nios II/f performs TLB and
cache lookup sequentially over two cycles (E and M stages, respectively), taking a total
of 6.0 ns on the same FPGA (2.1 ns for TLB tag comparisons, 3.9 ns for cache tag com-
parisons and generating a hit/miss signal), despite having simpler functionality. The
Nios II does not have a store queue or data selection multiplexer, and does not support
TLB dirty and accessed bits, and unaligned, split-cache line or split-page accesses.

9.2. Circuits
The store queue is a 16-entry associatively-searched structure, where each entry must
decide whether a given load (address and size) partially or completely overlaps an
earlier store (address and size). This is determined using an interval-intersection com-
parator using two 12-bit three-input adders per store queue entry, which take advan-
tage of the three-input adders in Stratix IV FPGAs.

The 14-bit TLB tag comparison logic consists of a two-level tree for each TLB way,
comparing three bits of tag in each 6-LUT leaf, followed by a 5-input AND gate.

The 20-bit cache tag comparison logic is more complicated. It is replicated six times
to compare the two possible cache tags with the three possible physical frame numbers
(two TLB ways, and one if translation is bypassed). Two bits of cache tag comparison
is merged with the 2-to-1 multiplexer used to stitch together the two depth-64 MLABs
used to create the depth-128 cache tag array, using a 7-input LUT. Altera Adaptive
Logic Module (ALM)-based FPGAs can implement 7-input logic functions in a single
ALM if the function can be expressed as a 2-to-1 multiplexer selecting between two
5-LUTs that share 4 inputs. A second layer of LUTs reduces the 10 comparison results
down to two signals, and a final 7-LUT combines the result from the three comparators
for one way of the cache, selected by the TLB hit way 0? signal. This structure is well
balanced, with two levels of logic in both the cache tag comparators and the TLB tag
comparators before the final 7-LUT.

The cache data selection requires 32-to-1 multiplexers due to the need to support
unaligned load operations, selecting any byte from the 32-byte cache line. The mul-
tiplexers are decomposed into two 16-to-1 blocks that select a four-byte value from
each way of the cache, which is selected once the cache hit way is known. As a result,
unaligned accesses are supported with little extra delay.

9.3. Manual Circuit Optimization
The circuit diagram in Figure 8 shows many critical portions of the circuit technology-
mapped for Stratix IV ALMs. Careful manual technology mapping can produce better
results than the Quartus synthesis tool. We have found two areas where a human can
improve on the synthesis tool: A human can be better aware of the arrival times of
signals, and can sometimes do better mapping to LUTs.

Knowledge of arrival times allows replicating non-critical logic, then selecting the
result using the late-arriving signal nearer to the output of the cone of logic, which
is essentially Shannon decomposition. This was used effectively in replicating cache
tag comparators and in restructuring the data selection multiplexers, where it is not
obvious to a synthesis tool or where the logic function needs to be designed to make this
possible. Manually decomposing the logic can also be used on a smaller scale to force
more aggressive replication than the synthesis would normally do, trading area for
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performance. The keep synthesis attribute prevents the synthesis tool from optimizing
away the manual duplication.

More control over mapping to LUTs can be accomplished by using the keep directive
to delimit LUT boundaries, or using LCELL buffers, depending on which syntax is more
convenient. However, in many cases involving 7-LUTs, the synthesizer refuses to cre-
ate them even with clear boundaries, and we had to resort to using low-level device
primitives, which Altera calls “WYSIWYG” primitives.

The keep attribute can also be used to push non-critical logic further up a logic cone
to reduce the size of the final critical LUT. This was used to keep the final stage of the
data selection multiplexers no larger than a 5-LUT, which is slightly faster than if the
synthesizer were allowed to combine some non-critical signals into a larger LUT.

The impact of the above manual optimizations can be approximately measured by
removing the keep attributes and instructing Quartus synthesis to allow resynthe-
sis of LCELL buffers and WYSIWYG primitives. This is an inexact comparison, as
the desired circuit structure is still obvious in the code, rather than the typical sce-
nario where the synthesis tool must infer technology-dependent circuit structures from
technology-independent behavioural RTL code.

With manual optimizations resynthesized away, the delay of the cache access stage
increased from 4.29 ns to 4.87 ns (13.5%), due to an increase from 5 logic levels to
7 (best of 30 placement random seeds). Both the TLB and cache tag comparison logic
increased by one logic level. A second increase occurred in the data selection multiplex-
ers, as Quartus synthesis did not place the most critical signal nearest the output of
the cone of logic. Manual optimizations increased ALM usage by a negligible 68 ALMs
(0.5%).

Overall, the synthesis tools work well for non-critical paths, and manual mapping
to LUTs is only necessary in critical regions where the synthesized circuit structure
is sub-optimal. However, being aware of technology mapping during microarchitecture
design can enable new circuit-level optimizations and allow verifying the synthesized
output’s circuit structure.

10. FPGA MEMORY SYSTEM IMPLEMENTATION RESULTS
We completed the full design of the baseline configuration of the memory system (de-
scribed in Table III) and synthesized it on an Altera Stratix IV FPGA (smallest chip,
fastest speed grade, EP4SGX70HF35C2), using Quartus 15.0.

10.1. Area
The total resource usage is just under 14 000 Stratix IV equivalent ALMs. Equivalent
ALMs combine the area of soft logic and RAM blocks using a common unit, using
scaling factors from [Wong et al. 2011]. A layout of the memory system synthesized for
the smallest Stratix IV FPGA (Figure 9) gives a qualitative area comparison between
hardware units. Table IV shows a quantitative breakdown.

The coherence unit and L2 is the biggest unit due to the large L2 cache RAMs,
although the L2 cache (excluding the RAM) contributes little to logic complexity (under
500 ALMs) despite the wide 256-bit buses. The coherence unit is not solely optimized
for area: our choice of wide 256-bit buses and multiplexing (Figure 2) increases area to
reduce design complexity by using single-cycle cache line transfers.

The L1 memory execution is the next biggest component. The associatively-accessed
store queue, load queue, and replay scheduler contribute about half of the memory
execution unit. Although the L1 data cache has the same organization as the L1 in-
struction cache (2-way 8 KB), the data cache uses more than twice the area (Figures
7(a) and 7(b)) because it needs to support stores, evictions of dirty lines, and unaligned
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Load/storePexecution
128-entryPP2-wayPTLB
8PKBP2-wayPcache

16-entryPLoadPqueue
16-entryPStorePqueue
8-entryPscheduler

InstructionPFetch
128-entryPP2-wayPTLB
8PKBP2-wayPcache

PagePtablePwalker

CoherenceP+PL2
256PKBP4-wayPcache

Fig. 9. Layout on the smallest Stratix IV FPGA (4SGX70)

accesses, requiring shifters and more multiplexers. The instruction cache uses mixed
RAM port widths to reduce this multiplexing.

Another source of cache area comes from cache tag replication. The data cache tags
are replicated three times (for loads, stores, and L2 snoops), whereas instruction cache
tags are replicated twice (for fetches and L2 snoops), while L2 cache tags are not repli-
cated. This is another reason first-level caches are more expensive to scale to larger
sizes than second-level caches. Indeed, the L2 cache has 32× the capacity but is less
than 3× the size of the L1 data cache.

Typical out-of-order processors spend 15-35% of their core area (excluding L2 cache)
on the L1 memory system. We believe our area target of ∼40 000 equivalent ALMs is
achievable. Our memory system equivalent area (excluding L2 cache) of roughly 9 000
ALMs is 23% of our budget, which fits comfortably in the expected range.

10.2. Frequency
The achieved frequency is typically 200 MHz on the fastest speed grade, smallest
Stratix IV FPGA. Due to extensive work to maximize the frequency, the design cur-
rently has near-critical timing paths in many places (e.g., Figure 8), with the coher-
ence and L2 unit being most critical. The L2 data array (using M144K blocks) with
long routing paths are particularly problematic. However, removing the L2 cache only
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Table IV. Area on Stratix IV

Unit ALM M9K M144K Equiv.
ALMa

Fetch 995 8 0 1225
ICache 488 8 0 718
ITLB 191 0 0 191

Coherence and L2 3766 23 14 8164
L2 Cache 484 23 14 4882
8-entry MSHR 326 0 0 326

Page table walk 392 0 0 392
L1 memory execution 4462 8 0 4692

16-entry Store queue 1113 0 0 1113
16-entry Load queue 528 0 0 528
8-entry Scheduler 375 0 0 375
4-entry MSHR 65 0 0 65
DCache 1513 8 0 1743
DTLB 156 0 0 156

Totalb 9080 39 14 13937
a Equiv. ALMs: M9K = 28.7 ALM, M144K = 267 ALM [Wong et al. 2011]
b The sum of ALMs for the four modules exceeds the total ALM count, as

Quartus double-counts ALMs that are shared between modules.

results in a 7% increase of the final frequency, as the L1 cache access stage is nearly
critical (L1D Load stage 2 in Figure 2).

11. CONCLUSIONS
A major component of a high-performance processor is its memory system. In this pa-
per we have presented an out-of-order non-blocking memory system for a soft processor
that implements many features of the x86 ISA, including those required to boot a full
operating system. We have explored a number of microarchitectural options for the
memory system, and showed that a two-level cache hierarchy is favoured particularly
when paging is enabled. Scaling the L1 cache size is difficult due to higher latency
and tag replication area, and the L2 cache is important for caching page table entries.
We also showed that non-blocking caches provide a large IPC improvement even for a
relatively narrow two-issue processor with the relatively low memory latency seen on
low-clock speed FPGA processors. The IPC increases (1.32× SPECint2000 vs. a block-
ing cache, and an additional 1.60× vs. no L2 cache) reflect only changes in the memory
system. We expect IPC gains to be far greater when comparing a full out-of-order pro-
cessor to current single-issue in-order soft processors.

We have demonstrated high-speed circuits for our non-blocking, speculative out-of-
order memory system with two cache levels — features rarely found in current soft
processors. The large IPC increases come at a large but affordable area increase, but
only a small frequency loss over high-frequency in-order processors. Careful microar-
chitecture and circuit design resulted in a faster TLB and cache lookup (4.29 ns) than
the simpler Nios II/f (6.0 ns). We also saw that manual technology mapping of critical
paths in our memory system improved delay over automated synthesis.

This design of the high performance memory system is a key step toward our long-
term goal of a higher-performance out-of-order superscalar soft processor.
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