
Henry Wong, Misel-Myrto Papadopoulou, 
Maryam Sadooghi-Alvandi, Andreas Moshovos

University of Toronto

Demystifying GPU 
Microarchitecture through 

Microbenchmarking

Henry Wong



2

GPUs

Graphics Processing Units
Increasingly programmable

10x arithmetic and memory bandwidth vs. CPU
Commodity hardware
Requires 1000-way parallelization

NVIDIA CUDA
Write GPU thread in C variant
Compiled into native instructions and run in parallel on GPU



3

How Well Do We Know the GPU?

How much do we know?
We know enough to write programs
We know basic performance tuning

Caches exist
Approximate memory speeds
Instruction throughput

Why do we want to know more?
Detailed optimization
Compiler optimizations. e.g., Ocelot
Performance modeling. e.g., GPGPU-Sim



4

Outline

Background on CUDA
Pipeline latency and throughput
Branch divergence
Syncthreads barrier synchronization
Memory Hierarchies

Cache and TLB organization
Cache sharing

...more in the paper



5

CUDA Software Model

Grid
Block

Thread

Threads branch independently
Threads inside Block may interact
Blocks are independent



6

CUDA Blocks and SMs

Blocks are assigned to SMs

Software Hardware



7

CUDA Hardware Model

SM: Streaming Multiprocessor
Warp: Groups of 32 threads like a vector

TPC: Thread Processing Cluster
Interconnect
Memory Hierarchy



8

Goal and Methodology

Aim to discover microarchitecture beyond documentation

Microbenchmarks
Measure code timing and behaviour
Infer microarchitecture

Measure time using clock() function
two clock cycle resolution



9

Arithmetic Pipeline: Methodology

Objective: Measure instruction latency and throughput
Latency: One thread
Throughput: Many threads

Measure runtime of microbenchmark core
Avoid compiler optimizing away code
Discard first iteration: Cold instruction cache

for (i=0;i<2;i++) {
start_tim e = clock();

t1 += t2;
t2 += t1;
...
t1 += t2;

stop_tim e = clock();
}



10

Arithmetic Pipeline: Results

Three types of arithmetic units
SP: 24 cycles, 8 ops/clk
SFU: 28 cycles, 2 ops/clk
DPU: 48 cycles, 1 op/clk

Peak SM throughput 
11.2 ops/clk: MUL or MAD + MUL



11

SIMT Control Flow

Warps run in lock-step but threads can branch independently
Branch divergence

Taken and fall-through paths are serialized
Taken path (usually “else”) executed first
Fall-through path pushed onto a stack

int __shared__ sharedvar = 0;

while (! sharedvar == tid) ;

sharedvar++;



12

Barrier Synchronization

Syncthreads: Synchronizes Warps, not threads
Does not resync diverged warps
Will sync with other warps

if (warp0) {
if (tid < 16) {

shared_array[tid] = tid;
__syncthreads();

}
else {

__syncthreads();
out[tid] = shared_array[tid%16]

}
}

if (warp1) {
__syncthreads();
__syncthreads();

}

1 2

if (tid < 16) {
shared_array[tid] = tid;
__syncthreads();

}
else {

__syncthreads();
out[tid] = shared_array[tid%16]

}

Warp0 Warp1



13

Texture Memory

Average latency vs. memory footprint, stride accesses
5 KB L1 cache, 20-way
256 KB L2 cache, 8-way



14

Texture L1

5 KB, 32-byte lines, 8 cache sets, 20-way set associative
L2 is located across a non-uniform interconnect

5120bytes
256bytes /way

=20waysL1 Hit

L1 Miss



15

Constant Cache Sharing

L1

L2

L3

Three levels of constant cache
Two Blocks accessing constant memory

L3: Global
L2: Per-TPC
L1: Per-SM



16

Constant and Instruction Cache Sharing

Two different types of accesses
L2 and L3 are Constant and Instruction caches



17

Global Memory TLBs

8 MB L1, 512 KB line, 16-way
32 MB L2, 4 KB line, 8-way

L2 non-trivial to measure

8 MB
L1

32 MB
L2



18

Conclusions

Microbenchmarking reveals undocumented 
microarchitecture features

Three arithmetic unit types: latency and throughput
Branch divergence using a stack
Barrier synchronization on warps
Memory Hierarchy

Cache organization and sharing
TLBs

Applications
Measuring other architectures and microarchitectural features
For GPU code optimization and performance modeling



19

Questions...



20

Filling the SP Pipeline

6 warps (24 clocks, 192 “threads”) should fill pipeline
2 warps if sufficient instruction-level independence (not shown)

24-cycle SP pipeline latency
Fair scheduling on average



21

Instruction Fetch?

Capture burst of timing at each iteration, then average
One thread measures timing
Other warps thrash one line of L1 instruction cache

Instructions are fetched from L1 in groups of 64 bytes


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

