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® Graphics Processing Units
> Increasingly programmable

® 10x arithmetic and memory bandwidth vs. CPU
> Commodity hardware
> Requires 1000-way parallelization

* NVIDIA CUDA
> Write GPU thread in C variant
> Compiled into native instructions and run in parallel on GPU




How Well Do We Know the GPU?

® How much do we know?
> We know enough to write programs
> We know basic performance tuning
o Caches exist
o Approximate memory speeds
o Instruction throughput
® Why do we want to know more?
> Detailed optimization
> Compiler optimizations. e.g., Ocelot
> Performance modeling. e.g., GPGPU-Sim




Outline

Background on CUDA

Pipeline latency and throughput
Branch divergence

Syncthreads barrier synchronization

Memory Hierarchies
> Cache and TLB organization
> Cache sharing

...more in the paper




CUDA Software Model
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CUDA Blocks and SMs
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CUDA Hardware Model

® SM: Streaming Multiprocessor
> Warp: Groups of 32 threads like a vector

® TPC: Thread Processing Cluster

® Interconnect CGPU

® Memory Hierarchy
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Goal and Methodology

® Aim to discover microarchitecture beyond documentation

® Microbenchmarks
> Measure code timing and behaviour
> Infer microarchitecture

® Measure time using clock() function
o two clock cycle resolution
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Arithmetic Plpellne Methodology

° Objectlve Measure mstructlon latency and throughput
> Latency: One thread
> Throughput: Many threads
® Measure runtime of microbenchmark core
> Avoid compiler optimizing away code
> Discard first iteration: Cold instruction cache

for (=05k2;++) {
start_tme = cbdk(Q;

t += 2;
2 += tl;




Arithmetic Pipeline: Results

® Three types of arithmetic units
o SP: 24 cycles, 8 ops/clk
> SFU: 28 cycles, 2 ops/clk
> DPU: 48 cycles, 1 op/clk

® Peak SM throughput
> 11.2 ops/clk: MUL or MAD + MUL

Scheduling, Register File
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° Warps run in lock-step but threads can branch mdependently
® Branch divergence

> Taken and fall-through paths are serialized

> Taken path (usually “else™) executed first

> Fall-through path pushed onto a stack

sharedvar
tido

E ‘ while (! sharedvar == tid) ; tid 1
sharedvar++; i

tid 2

int __shared _ sharedvar = 0;




Barrier Synchronlzatlon
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° Syncthreads Synchronizes Warps not threads
> Does not resync diverged warps
> Wil sync with other warps

Warp0 Warpl

it warp0) {
if (tid < 16) { “ ‘
shared_array[tid] = td

__syncthreads

__syncthreads();
__syncthreads();




Texture Memory

® Average latency vs. memory footprint, stride accesses
> 5 KB L1 cache, 20-way
» 256 KB L2 cache, 8-way
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Texture L1

o 5 KB, 32-byte lines, 8 cache sets, 20-way set associative

e L2 is located across a non-uniform interconnect
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Constant Cache Sharing

® Three levels of constant cache
® Two Blocks accessing constant memory
> L3: Global
o L2: Per-TPC
> L1: Per-SM !
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Constant and Instruction Cache Sharing

® Two different types of accesses
e L2 and L3 are Constant and Instruction caches
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® 8 MB L1, 512 KB line, 16-way

® 32 MB L2, 4 KB line, 8-way
> L2 non-trivial to measure
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Conclusions

® Microbenchmarking reveals undocumented
microarchitecture features

> Three arithmetic unit types: latency and throughput
> Branch divergence using a stack
> Barrier synchronization on warps

> Memory Hierarchy

o Cache organization and sharing
> TLBs

® Applications
> Measuring other architectures and microarchitectural features
> For GPU code optimization and performance modeling




Questions...
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Filling the SP Pipeline

® 6 warps (24 clocks, 192 “threads”) should fill pipeline
o 2 warps if sufficient instruction-level independence (not shown)

o 24-cycle SP pipeline latency
® Fair scheduling on average
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Instruction Fetch?

o Capture burst of timing at each iteration, then average
> One thread measures timing
> Other warps thrash one line of L1 instruction cache

® |nstructions are fetched from L1 in groups of 64 bytes

2048

I.'!

[
[
L%
(=3}

Q
=
Q
[
]
w
Q
A
Y
o
=
m
=
un
Q
L
-
w
i
—
w
o
o

128 192 256 320 384 448 512
Code location since start of measurement code (bytes)




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

