Demystifying GPU
Microarchitecture through
Microbenchmarking

Henry Wong

Henry Wong, Misel-Myrto Papadopoulou,
Maryam Sadooghi-Alvandi, Andreas Moshovos
University of Toronto




® Graphics Processing Units
> Increasingly programmable

® 10x arithmetic and memory bandwidth vs. CPU
> Commodity hardware
> Requires 1000-way parallelization

* NVIDIA CUDA
> Write GPU thread in C variant
> Compiled into native instructions and run in parallel on GPU




How Well Do We Know the GPU?

® How much do we know?
> We know enough to write programs
> We know basic performance tuning
o Caches exist
o Approximate memory speeds
o Instruction throughput
® Why do we want to know more?
> Detailed optimization
> Compiler optimizations. e.g., Ocelot
> Performance modeling. e.g., GPGPU-Sim




Outline

Background on CUDA

Pipeline latency and throughput
Branch divergence

Syncthreads barrier synchronization

Memory Hierarchies
> Cache and TLB organization
> Cache sharing

...more in the paper




CUDA Software Model

Grlc

Uﬂ[m”] gloclﬂm] Llock

lock

nreads branch independently
nreads inside Block may interact
ocks are independent

.




CUDA Blocks and SMs

;a‘l!" ) I - S ) R, G PO e S = e i P Ml ) ) i

° Blocks are aSS|gned to SMs

" GPU

Cache and
Memory

\

Ioc [Blocﬁ
SM SM
lo

Interconnect

SM|

TPC

Block Block

Software Hardware




= & o il

CUDA Hardware Model

® SM: Streaming Multiprocessor
> Warp: Groups of 32 threads like a vector

® TPC: Thread Processing Cluster

® Interconnect CGPU

® Memory Hierarchy

Interconnect

Cache and
Memory




Goal and Methodology

® Aim to discover microarchitecture beyond documentation

® Microbenchmarks
> Measure code timing and behaviour
> Infer microarchitecture

® Measure time using clock() function
o two clock cycle resolution




N e e Sl

Arithmetic Plpellne Methodology

° Objectlve Measure mstructlon latency and throughput
> Latency: One thread
> Throughput: Many threads
® Measure runtime of microbenchmark core
> Avoid compiler optimizing away code
> Discard first iteration: Cold instruction cache

for (=05k2;++) {
start_tme = cbdk(Q;

t += 2;
2 += tl;




Arithmetic Pipeline: Results

® Three types of arithmetic units
o SP: 24 cycles, 8 ops/clk
> SFU: 28 cycles, 2 ops/clk
> DPU: 48 cycles, 1 op/clk

® Peak SM throughput
> 11.2 ops/clk: MUL or MAD + MUL

Scheduling, Register File

A e Ve ¥

N
Co




° Warps run in lock-step but threads can branch mdependently
® Branch divergence

> Taken and fall-through paths are serialized

> Taken path (usually “else™) executed first

> Fall-through path pushed onto a stack

sharedvar
tido

E ‘ while (! sharedvar == tid) ; tid 1
sharedvar++; i

tid 2

int __shared _ sharedvar = 0;




Barrier Synchronlzatlon

g TN P

° Syncthreads Synchronizes Warps not threads
> Does not resync diverged warps
> Wil sync with other warps

Warp0 Warpl

it warp0) {
if (tid < 16) { “ ‘
shared_array[tid] = td

__syncthreads

__syncthreads();
__syncthreads();




Texture Memory

® Average latency vs. memory footprint, stride accesses
> 5 KB L1 cache, 20-way
» 256 KB L2 cache, 8-way

550

500

450

I

Read Latency {clocks)

32 64 96 128 160 192 224 256 288 320
Texture Cache Footprint (KB}




Texture L1

o 5 KB, 32-byte lines, 8 cache sets, 20-way set associative

e L2 is located across a non-uniform interconnect
292

288 ofimd Pt
I |

284

280

276

272

T}
- 4
[
=
L
-
[=
o
2K}
]
2~}
—l
=
2=}
L]
(=4

268 . 120 bytes
264 byteS/WGy

260
4864 4992 5120 5248 5376 5504 5632

Texture Cache Footprint (bytes)




Constant Cache Sharing

® Three levels of constant cache
® Two Blocks accessing constant memory
> L3: Global
o L2: Per-TPC
> L1: Per-SM !
400 xjff //!/f
300

200 //
! — Share SM
— Share TPC
100 _U — Different TPC

— Single Block

(g
.
[
=
[
=
2K}
s
3~}
—
=
2~}
2k}
="

0
0 4 3 12 16 20 24 28 32 36 40

Constant Memory Footprint (KB)




_ O TN - il

Constant and Instruction Cache Sharing

® Two different types of accesses
e L2 and L3 are Constant and Instruction caches

600

500

400 //
300 =
200 ? /

W
-
[
=
[
=
a¥]
]
[a=]
—l
=
[ax]
4 %]
="

— Share SM
— Share TPC |
— Different TPC

— Single Block

12 16 20 24 28 32 36 40
Constant Memory Footprint (KB)




® 8 MB L1, 512 KB line, 16-way

® 32 MB L2, 4 KB line, 8-way
> L2 non-trivial to measure
/50

700

650

600

550

Read Latency {clocks)

500

450

400

24 32 40 48 56 64
Global Memory Footprint {MB)




Conclusions

® Microbenchmarking reveals undocumented
microarchitecture features

> Three arithmetic unit types: latency and throughput
> Branch divergence using a stack
> Barrier synchronization on warps

> Memory Hierarchy

o Cache organization and sharing
> TLBs

® Applications
> Measuring other architectures and microarchitectural features
> For GPU code optimization and performance modeling




Questions...




e

Filling the SP Pipeline

® 6 warps (24 clocks, 192 “threads”) should fill pipeline
o 2 warps if sufficient instruction-level independence (not shown)

o 24-cycle SP pipeline latency
® Fair scheduling on average

9

8

7

6

Throughput (ops/clock)
Avg Latency (clocks)

B Throughput |
== Avg Latency

1
14




e

Instruction Fetch?

o Capture burst of timing at each iteration, then average
> One thread measures timing
> Other warps thrash one line of L1 instruction cache

® |nstructions are fetched from L1 in groups of 64 bytes

2048

I.'!

[
[
L%
(=3}

Q
=
Q
[
]
w
Q
A
Y
o
=
m
=
un
Q
L
-
w
i
—
w
o
o

128 192 256 320 384 448 512
Code location since start of measurement code (bytes)




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

