
Demystifying GPU Microarchitecture through
Microbenchmarking

Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos
Department of Electrical and Computer Engineering, University of Toronto

{henry, myrto, alvandim, moshovos}@eecg.utoronto.ca

Abstract—Graphics processors (GPU) offer the promise of
more than an order of magnitude speedup over conventional
processors for certain non-graphics computations. Because the
GPU is often presented as a C-like abstraction (e.g., Nvidia’s
CUDA), little is known about the characteristics of the GPU’s
architecture beyond what the manufacturer has documented.
This work develops a microbechmark suite and measures the
CUDA-visible architectural characteristics of the Nvidia GT200
(GTX280) GPU. Various undisclosed characteristics of the pro-
cessing elements and the memory hierarchies are measured. This
analysis exposes undocumented features that impact program
performance and correctness. These measurements can be useful
for improving performance optimization, analysis, and modeling
on this architecture and offer additional insight on the decisions
made in developing this GPU.

I. INTRODUCTION

The graphics processor (GPU) as a non-graphics compute
processor has a different architecture from traditional sequential
processors. For developers and GPU architecture and compiler
researchers, it is essential to understand the architecture of a
modern GPU design in detail.

The Nvidia G80 and GT200 GPUs are capable of non-
graphics computation using the C-like CUDA programming
interface. The CUDA Programming Guide provides hints of
the GPU performance characteristics in the form of rules [1].
However, these rules are sometimes vague and there is little
information about the underlying hardware organization that
motivates them.

This work presents a suite of microbenchmarks targeting
specific parts of the architecture. The presented measurements
focus on two major parts that impact GPU performance: the
arithmetic processing cores, and the memory hierarchies that
feed instructions and data to these processing cores. A precise
understanding of the processing cores and of the caching
hierarchies is needed for avoiding deadlocks, for optimizing
application performance, and for cycle-accurate GPU perfor-
mance modeling.

Specifically, in this work:

• We verify performance characteristics listed in the CUDA
Programming Guide.

• We explore the detailed functionality of branch divergence
and of the barrier synchronization. We find some non-
intuitive branching code sequences that lead to deadlock,
which an understanding of the internal architecture can
avoid.

Fig. 1: Streaming Multiprocessor
with 8 Scalar Processors Each

Fig. 2: Thread Processing Cluster
with 3 SMs Each

Fig. 3: GPU with TPCs and Memory Banks

• We measure the structure and performance of the memory
caching hierarchies, including the Translation Lookaside
Buffer (TLB) hierarchy, constant memory, texture mem-
ory, and instruction memory caches.

• We discuss our measurement techniques, which we believe
will be useful in the analysis and modeling of other GPUs
and GPU-like systems, and for improving the fidelity of
GPU performance modeling and simulation [2].

The remainder of this paper is organized as follows. Section
II reviews the CUDA computation model. Section III describes
the measurement methodology, and Section IV presents the
measurements. Section V reviews related work and Section VI
summarizes our findings.

II. BACKGROUND: GPU ARCHITECTURE AND
PROGRAMMING MODEL

A. GPU Architecture

CUDA models the GPU architecture as a multi-core system.
It abstracts the thread-level parallelism of the GPU into a hierar-
chy of threads (grids of blocks of warps of threads) [1]. These
threads are mapped onto a hierarchy of hardware resources.
Blocks of threads are executed within Streaming Multipro-
cessors (SM, Figure 1). While the programming model uses
collections of scalar threads, the SM more closely resembles
an eight-wide vector processor operating on 32-wide vectors.

SM Resources
SPs
(Scalar Processor) 8 per SM

SFUs (Special
Function Unit) 2 per SM

DPUs (Double
Precision Unit) 1 per SM

Registers 16,384 per SM
Shared Memory 16 KB per SM

Caches
Constant Cache 8 KB per SM
Texture Cache 6-8 KB per SM

GPU Organization
TPCs (Thread
Processing Cluster) 10 total

SMs (Streaming
Multiprocessor) 3 per TPC

Shader Clock 1.35 GHz
Memory 8 × 128MB, 64-bit
Memory Latency 400-600 clocks

Programming Model
Warps 32 threads
Blocks 512 threads max
Registers 128 per thread max
Constant Memory 64 KB total
Kernel Size 2 M PTX insns max

TABLE I: GT200 Parameters according to Nvidia [1], [3]

The basic unit of execution flow in the SM is the warp.
In the GT200, a warp is a collection of 32 threads and
is executed in groups of eight on eight Scalar Processors
(SP). Nvidia refers to this arrangement as Single-Instruction
Multiple-Thread (SIMT), where every thread of a warp executes
the same instruction in lockstep, but allows each thread to
branch separately. The SM contains arithmetic units, and other
resources that are private to blocks and threads, such as per-
block shared memory and the register file. Groups of SMs
belong to Thread Processing Clusters (TPC, Figure 2). TPCs
also contain resources (e.g., caches, texture fetch units) that are
shared among the SMs, most of which are not visible to the
programmer. From CUDA’s perspective, the GPU comprises
the collection of TPCs, the interconnection network, and the
memory system (DRAM memory controllers), as shown in
Figure 3. Table I shows the parameters Nvidia discloses for
the GT200 [1], [3].

B. CUDA Software Programming Interface

CUDA presents the GPU architecture using a C-like pro-
gramming language with extensions to abstract the threading
model. In the CUDA model, host CPU code can launch GPU
kernels by calling device functions that execute on the GPU.
Since the GPU uses a different instruction set from the host
CPU, the CUDA compilation flow compiles CPU and GPU
code using different compilers targeting different instruction
sets. The GPU code is first compiled into PTX “assembly”,
then “assembled” into native code. The compiled CPU and
GPU code is then merged into a single “fat” binary [4].

Although PTX is described as being the assembly level
representation of GPU code, it is only an intermediate rep-
resentation, and was not useful for detailed analysis or mi-
crobenchmarking. Since the native instruction set is different

and compiler optimization is performed on the PTX code,
PTX code is not a good representation of the actual machine
instructions executed. In most cases, we have found it most
productive to write in CUDA C, then verify the generated
machine code sequences at the native code level using decuda
[5]. The use of decuda was mainly for convenience, as the
generated instruction sequences can be verified in the native
cubin binary. Decuda is a disassembler for Nvidia’s machine-
level instructions, derived from analysis of Nvidia’s compiler
output, as the native instruction set is not publicly documented.

III. MEASUREMENT METHODOLOGY

A. Microbenchmark Methodology

To explore the GT200 architecture, we create microbench-
marks to expose each characteristic we wish to measure. Our
conclusions were drawn from analyzing the execution times of
the microbenchmarks. Decuda was used to report code size and
location when measuring instruction cache parameters, which
agreed with our analysis of the compiled code. We also used
decuda to inspect native instruction sequences generated by
the CUDA compiler and to analyze code generated to handle
branch divergence and reconvergence.

The general structure of a microbenchmark consists of GPU
kernel code containing timing code around a code section (typ-
ically an unrolled loop running multiple times) that exercises
the hardware being measured. A benchmark kernel runs through
the entire code twice, disregarding the first iteration to avoid the
effects of cold instruction cache misses. In all cases, the kernel
code size is small enough to fit into the L1 instruction cache
(4 KB, see Section IV-K). Timing measurements are done by
reading the clock register (using clock()). The clock values are
first stored in registers, then written to global memory at the
end of the kernel to avoid slow global memory accesses from
interfering with the timing measurements.

When investigating caching hierarchies, we observed that
memory requests which traverse the interconnect (e.g., access-
ing L3 caches and off-chip memory) had latencies that varied
depending on which TPC was executing the code. We average
our measurements across all 10 TPC placements and report the
variation where relevant.

B. Deducing Cache Characteristics from Latency Plots

Most of our cache and TLB parameter measurements use
stride accesses to arrays of varying size, with average access
latency plotted. The basic techniques described in this section
are also used to measure CPU cache parameters. We develop
variations for instruction caches and shared cache hierarchies.

Figure 4 shows an example of extracting cache size, way
size, and line size from an average latency plot. This example
assumes an LRU replacement policy, a set-associative cache,
and no prefetching. The cache parameters can be deduced from
the example plot of Figure 4(a) as follows: As long as the array
fits in the cache, the latency remains constant (sizes 384 and
below). Once the array size starts exceeding the cache size,
latency steps, equal in number to the number of cache sets
(four), occur as the sets overflow one by one (sizes 385-512,

(a) Latency Plot for 384-byte, 3-way, 4-set, 32-byte line cache

(b) Array 480 Bytes (15 Lines) in Size

Fig. 4: Three-Way 12-Line Set-Associative Cache and its Latency Plot

cache way size). The increase in array size needed to trigger
each step of average latency increase equals the line size (32
bytes). Latency plateaus when all cache sets overflow (size ≥16
cache lines). The cache associativity (three) can be found by
dividing cache size (384 bytes) by the way size (128 bytes).
This calculation does not need the line size nor the number of
cache sets. There are other possible ways to compute the four
cache parameters, as knowing any three will give the fourth,
using cache size = cache sets× line size× associativity.

Listings 1 and 2 show the structure of our memory mi-
crobenchmarks. For each array size and stride, the microbench-
mark performs a sequence of dependent reads, with the pre-
computed stride access pattern stored in the array, eliminating
address computation overhead in the timed inner loop. The
stride should be smaller than the cache line size so all steps
in the latency plot are observable, but large enough so that
transitions between latency steps are not too small to be clearly
distinguished.

f o r (i = 0 ; i < array_size ; i++) {
i n t t = i + stride ;
i f (t >= array_size) t %= stride ;
host_array [i] = (i n t)device_array + 4*t ;

}
cudaMemcpy (device_array , host_array , . . .) ;

Listing 1: Array Initialization (CPU Code)

i n t *j = &device_array [0] ;
/ / s t a r t t i m i n g
repeat256 (j=*(i n t **)j ;) / / Macro copy 256 t i m e s
/ / end t i m i n g

Listing 2: Sequence of Dependent Reads (GPU Kernel Code)

IV. TESTS AND RESULTS

This section presents our detailed tests and results. We
begin by measuring the latency of the clock() function. We

Fig. 5: Timing of two consecutive kernel launches of 10 and 30 blocks. Kernel
calls are serialized, showing TPCs have independent clock registers.

Latency
(clocks)

Throughput
(ops/clock)

Issue Rate
(clocks/warp)

SP 24 8 4
SFU 28 2 16
DPU 48 1 32

TABLE II: Arithmetic Pipeline Latency and Throughput

then investigate the SM’s various arithmetic pipelines, branch
divergence and barrier synchronization. We also explore the
memory caching hierarchies both within and surrounding the
SMs, as well as memory translation and TLBs.

A. Clock Overhead and Characteristics

All timing measurements use the clock() function, which
returns the value of a counter that is incremented every clock
cycle [1]. The clock() function translates to a move from the
clock register followed by a dependent left-shift by one, sug-
gesting that the counter is incremented at half the shader clock
frequency. A clock() followed by a non-dependent operation
takes 28 cycles.

The experiment in Figure 5 demonstrates that clock registers
are per-TPC. Points in the figure show timestamp values
returned by clock() when called at the beginning and end of
a block’s execution. We see that blocks running on the same
TPC share timestamp values, and thus, share clock registers.
If clock registers were globally synchronized, the start times
of all blocks in a kernel would be approximately the same.
Conversely, if the clock registers were per-SM, the start times
of blocks within a TPC would not share the same timestamp.

B. Arithmetic Pipelines

Each SM contains three different types of execution units (as
shown in Figure 1 and Table I):
• Eight Scalar Processors (SP) that execute single precision

floating point and integer arithmetic and logic instructions.
• Two Special Function Units (SFU) that are responsible

for executing transcendental and mathematical functions
such as reverse square root, sine, cosine, as well as single-
precision floating-point multiplication.

• One Double Precision Unit (DPU) that handles computa-
tions on 64-bit floating point operands.

Table II shows the latency and throughput for these execution
units when all operands are in registers.

To measure the pipeline latency and throughput, we use tests
consisting of a chain of dependent operations. For latency tests,
we run only one thread. For throughput tests, we run a block of
512 threads (maximum number of threads per block) to ensure
full occupancy of the units. Tables III and IV show which
execution unit each operation uses, as well as the observed
latency and throughput.

Table III shows that single- and double-precision floating-
point multiplication and multiply-and-add (mad) each map to
a single device instruction. However, 32-bit integer multiplica-
tion translates to four native instructions, requiring 96 cycles.
32-bit integer mad translates to five dependent instructions and
takes 120 cycles. The hardware supports only 24-bit integer
multiplication via the mul24() intrinsic.

For 32-bit integer and double-precision operands, division
translates to a subroutine call, resulting in high latency and low
throughput. However, single-precision floating point division is
translated to a short inlined sequence of instructions with much
lower latency.

The measured throughput for single-precision floating point
multiplication is ∼11.2 ops/clock. This is greater than the SP
throughput of eight, which suggests that multiplication is issued
to both the SP and SFU units. This suggests that each of the
two SFUs is capable of doing ∼2 multiplications per cycle (4
in total for the 2 SFUs), twice the throughput of other (more
complex) instructions that map to the SFU. The throughput for
single-precision floating point mad is 7.9 ops/clock, suggesting
that mad operations cannot be executed by the SFUs.

Decuda shows that sinf(), cosf(), and exp2f() intrin-
sics each translate to a sequence of two dependent instructions
operating on a single operand. The Programming Guide states
that SFUs execute transcendental operations, however, the la-
tency and throughput measurements for these transcendental
instructions do not match those for simpler instructions (e.g.,
log2f) executed by these units. sqrt() maps to two instructions:
a reciprocal-sqrt followed by a reciprocal.

Figure 6 shows latency and throughput of dependent SP
instructions (integer additions), as the number of warps on the
SM increases. Below six concurrent warps, the observed latency
is 24 cycles. Since all warps observe the same latency, the
warp scheduler is fair. Throughput increases linearly while the
pipeline is not full, then saturates at eight (number of SP units)
operations per clock once the pipeline is full. The Programming
Guide states that six warps (192 threads) should be sufficient to
hide register read-after-write latencies. However, the scheduler
does not manage to fill the pipeline when there are six or seven
warps in the SM.

C. Control Flow

1) Branch Divergence: All threads of a warp execute a
single common instruction at a time. The Programming Guide
states that when threads of a warp diverge due to a data-
dependent conditional branch, the warp serially executes each
branch path taken, disabling threads that are not on that

Operation Type Execution
Unit

Latency
(clocks)

Throughput
(ops/clock)

add, sub,
max, min

uint,
int SP 24 7.9

mad uint,
int SP 120 1.4

mul uint,
int SP 96 1.7

div uint – 608 0.28
div int – 684 0.23
rem uint – 728 0.24
rem int – 784 0.20
and, or,
xor, shl,
shr

uint SP 24 7.9

Operation Type Execution
Unit

Latency
(clocks)

Throughput
(ops/clock)

add, sub,
max, min float SP 24 7.9

mad float SP 24 7.9
mul float SP, SFU 24 11.2
div float – 137 1.5

Operation Type Execution
Unit

Latency
(clocks)

Throughput
(ops/clock)

add, sub,
max, min double DPU 48 1.0

mad double DPU 48 1.0
mul double DPU 48 1.0
div double – 1366 0.063

TABLE III: Latency and Throughput of Arithmetic and Logic Operations

Operation Type Execution
Unit

Latency
(clocks)

Throughput
(ops/clock)

umul24() uint SP 24 7.9
mul24() int SP 24 7.9
usad() uint SP 24 7.9
sad() int SP 24 7.9
umulhi() uint – 144 1.0
mulhi() int – 180 0.77
fadd rn(),
fadd rz() float SP 24 7.9

fmul rn(),
fmul rz() float SP, SFU 26 10.4

fdividef() float – 52 1.9
dadd rn() double DPU 48 1.0
sinf(),
cosf() float SFU? 48 2.0

tanf() float – 98 0.67
exp2f() float SFU? 48 2.0
expf(),
exp10f() float – 72 2.0

log2f() float SFU 28 2.0
logf(),
log10f() float – 52 2.0

powf() float – 75 1.0
rsqrt() float SFU 28 2.0
sqrt() float SFU 56 2.0

TABLE IV: Latency and Throughput of Mathematical Intrinsics. A “–” in the
Execution Unit column denotes an operation that maps to a multi-instruction
routine.

path [1]. Our observations are consistent with the expected
behavior. Figure 7 shows the measured execution timeline for
two concurrent warps in a block whose threads diverge 32 ways.
Each thread takes a different path based on its thread ID and
performs a sequence of arithmetic operations. The figure shows

Fig. 6: SP Throughput and Latency. Having six or seven warps does not fully
utilize the pipeline.

Fig. 7: Execution Timeline of Two 32-Way Divergent Warps. Top series shows
timing for Warp 0, bottom for Warp 1.

that within a single warp, each path is executed serially, while
the execution of different warps may overlap. Within a warp,
threads that take the same path are executed concurrently.

2) Reconvergence: When the execution of diverged paths is
complete, the threads converge back to the same execution path.
Decuda shows that the compiler inserts one instruction before a
potentially-diverging branch, which provides the hardware with
the location of the reconvergence point. Decuda also shows
that the instruction at the reconvergence point is marked using

Fig. 8: Execution Timeline of Kernel Shown in Listing 3. Array c contains the
increasing sequence {0, 1, ..., 31}

a field in the instruction encoding. We observe that when
threads diverge, the execution of each path is serialized up
to the reconvergence point. Only when one path reaches the
reconvergence point does the other path begin executing.

According to Lindholm et al., a branch synchronization
stack is used to manage independent threads that diverge and
converge [6]. We use the kernel shown in Listing 3 to confirm
this statement. The array c contains a permutation of the set
of numbers between 0 and 31 specifying the thread execution
order. We observe that when a warp reaches a conditional
branch, the taken path is always executed first: for each if
statement the else path is the taken path and is executed first, so
that the last then-clause (else if (tid == c[31])) is always
executed first, and the first then-clause (if (tid == c[0])) is
executed last.

i f (tid == c [0]) { . . . }
e l s e i f (tid == c [1]) { . . . }
e l s e i f (tid == c [2]) { . . . }
. . .
e l s e i f (tid == c [3 1]) { . . . }

Listing 3: Reconvergence Stack Test

i n t __shared__ sharedvar = 0 ;
w h i l e (sharedvar != tid) ;
/ * ** r e c o n v e r g e n c e p o i n t ** * /
sharedvar++;

Listing 4: Example code that breaks due to SIMT behavior.

Figure 8 shows the execution timeline of this kernel when
the array c contains the increasing sequence {0, 1, ..., 31}. In
this case, thread 31 is the first thread to execute. When the array
c contains the decreasing sequence {31, 30, ..., 0}, thread 0 is
the first to execute, showing that the thread ID does not affect
execution order. The observed execution ordering is consistent
with the taken path being executed first, and the fall-through
path being pushed on a stack. Other tests show that the number
of active threads on a path also has no effect on which path is
executed first.

3) Effects of Serialization due to SIMT: The Programming
Guide states that for correctness, the programmer can ignore the
SIMT behavior. In this section, we show an example of code
that would work if threads were independent, but deadlocks due
to the SIMT behavior. In Listing 4, if threads were independent,
the first thread would break out of the while loop and increment
sharedvar. This would cause each consecutive thread to do
the same: fall out of the while loop and increment sharedvar,
permitting the next thread to execute. In the SIMT model,
branch divergence occurs when thread 0 fails the while-loop
condition. The compiler marks the reconvergence point just
before sharedvar++. When thread 0 reaches the reconvergence
point, the other (serialized) path is executed. Thread 0 cannot
continue and increment sharedvar until the rest of the threads
also reach the reconvergence point. This causes deadlock as
these threads can never reach the reconvergence point.

D. Barrier Synchronization

Synchronization between warps of a single block is done
using syncthreads(), which acts as a barrier. syncthreads()

is implemented as a single instruction with a latency of
20 clock cycles for a single warp executing a sequence of

syncthreads().

The Programming Guide recommends that syncthreads()
be used in conditional code only if the condition evaluates
identically across the entire thread block. The rest of this sec-
tion investigates the behavior of syncthreads() when this rec-
ommendation is violated. We demonstrate that syncthreads()
operates as a barrier for warps, not threads. We show that when
threads of a warp are serialized due to branch divergence, any

syncthreads() on one path does not wait for threads from the
other path, but only waits for other warps running within the
same thread block.

1) syncthreads() for Threads of a Single Warp: The Pro-
gramming Guide states that syncthreads() acts as a barrier for
all threads in the same block. However, the test in Listing 5
shows that syncthreads() acts as a barrier for all warps in the
same block. This kernel is executed for a single warp, in which
the first half of the warp produces values in shared memory for
the second half to consume.

If syncthreads() waited for all threads in a block, the
two syncthreads() in this example would act as a common
barrier, forcing the producer threads (first half of the warp)
to write values before the consumer threads (second half of
the warp) read them. In addition, since branch divergence
serializes execution of divergent warps (See Section IV-C1),
a kernel would deadlock whenever syncthreads() is used
within a divergent warp (In this example, one set of 16
threads would wait for the other serialized set of 16 threads
to reach its syncthreads() call). We observe that there is no
deadlock, and that the second half of the warp does not read
the updated values in the array shared_array (The else clause
executes first, see Section IV-C1), showing that syncthreads()
does not synchronize diverged threads within one warp as the
Programming Guide’s description might suggest.

i f (tid < 16) {
shared_array [tid] = tid ;
__syncthreads () ;

}
e l s e {
__syncthreads () ;
output [tid] =
shared_array [tid%16];

}

Listing 5: Example code that shows syncthreads() synchronizes at warp
granularity

/ / T e s t run wi th two warps
count = 0 ;
i f (warp0) {
__syncthreads () ;
count = 1 ;

}
e l s e {

w h i l e (count == 0) ;
}

Listing 6: Example code that deadlocks due to syncthreads(). Test is
run with two warps.

Fig. 9: Total registers used by a block is limited to 16,384 (64 KB). Maximum
number of threads in a block is quantized to 64 threads when limited by register
file capacity.

i f (warp0) {
/ / Two−way d i v e r g e n c e
i f (tid < 16)
__syncthreads () ; [1]

e l s e
__syncthreads () ; [2]

}
i f (warp1) {
__syncthreads () ; [3]
__syncthreads () ; [4]

}

Listing 7: Example code that produces unintended results due to
syncthreads()

2) syncthreads() Across Multiple Warps: syncthreads()
is a barrier that waits for all warps to either call syncthreads()
or terminate. If there is a warp that neither calls syncthreads()
nor terminates, syncthreads() will wait indefinitely, suggest-
ing the lack of a time-out mechanism. Listing 6 shows one
example of such a deadlock (with no branch divergence) where
the second warp spins waiting for data generated after the

syncthreads() by the first warp.
Listing 7 illustrates the details of the interaction be-

tween syncthreads() and branch divergence. Given that
syncthreads() operates at a warp granularity, one would

expect that either the hardware would ignore syncthreads()
inside divergent warps, or that divergent warps participate in
barriers in the same way as warps without divergence. We show
that the latter is true.

In this example, the second syncthreads() synchronizes
with the third, and the first with the fourth (For warp 0, code
block 2 executes before code block 1 because block 2 is the
branch’s taken path, see Section IV-C1). This confirms that

syncthreads() operates at the granularity of warps and that
diverged warps are no exception. Each serialized path executes

syncthreads() separately (Code block 2 does not wait for 1
at the barrier). It waits for all other warps in the block to also
execute syncthreads() or terminate.

E. Register File

We confirm that the register file contains 16,384 32-bit
registers (64 KB), as the Programming Guide states [1]. The
number of registers used by a thread is rounded up to a multiple

of four [4]. Attempting to launch kernels that use more than 128
registers per thread or a total of more than 64 KB of registers
in a block results in a failed launch. In Figure 9, below 32
registers per thread, the register file cannot be fully utilized
because the maximum number of threads allowed per block is
512. Above 32 registers per thread, the register file capacity
limits the number of threads that can run in a block. Figure 9
shows that when limited by register file capacity, the maximum
number of threads in a block is quantized to 64 threads. This
puts an additional limit on the number of registers that can be
used by one kernel, and is most visible when threads use 88
registers each: Only 128 threads can run in a block and only
11,264 (128 threads × 88) registers can be used, utilizing only
69% of the register file.

The quantizing of threads per block to 64 threads suggests
that each thread’s registers are distributed to one of 64 logical
“banks”. Each bank is the same size, so each bank can fit the
same number of threads, limiting threads to multiples of 64
when limited by register file capacity. Note that this is different
from quantizing the total register use.

Because all eight SPs always execute the same instruction
at any given time, a physical implementation of 64 logical
banks can share address lines among the SPs and use wider
memory arrays instead of 64 real banks. Having the ability to
perform four register accesses per SP every clock cycle (four
logical banks) provides sufficient bandwidth to execute three-
read, one-write operand instructions (e.g., multiply-add) every
clock cycle. A thread would access its registers over multiple
cycles, since they all reside in a single bank, with accesses for
multiple threads occurring simultaneously.

Having eight logical banks per SP could provide extra
bandwidth for the “dual-issue” feature using the SFUs (see
Section IV-B) and for performing memory operations in parallel
with arithmetic.

The Programming Guide alludes to preferring multiples of
64 threads by suggesting that to avoid bank conflicts, “best
results” are achieved if the number of threads per block is a
multiple of 64. We observe that when limited by register count,
the number of threads per block is limited to a multiple of 64,
while no bank conflicts were observed.

F. Shared Memory

Shared memory is a non-cached per-SM memory space. It
is used by threads of a block to cooperate by sharing data
with other threads from the same block. The amount of shared
memory allowed per block is 16 KB. The kernel’s function
parameters also occupy shared memory, thus slightly reducing
the usable memory size.

We measure the read latency to be 38 cycles using stride
accesses as in Listings 1 and 2. Volkov and Demmel reported
a similar latency of 36 cycles on the 8800GTX, the predecessor
of the GT200 [7]. The Programming Guide states that shared
memory latency is comparable to register access latency. Vary-
ing the memory footprint and stride of our microbenchmark
verified the lack of caching for shared memory.

Fig. 10: Texture Memory. 5 KB L1 and 256 KB, 8-way L2 caches. Measured
using 64-byte stride.

G. Global Memory

Global memory is accessible by all running threads, even
if they belong to different blocks. Global memory accesses are
uncached and have a documented latency of 400-600 cycles [1].
Our microbenchmark executes a sequence of pointer-chasing
dependent reads to global memory, similar to Listings 1 and
2. In the absence of a TLB miss, we measure a read latency
in the range of 436-443 cycles. Section IV-I2 presents more
details on the effects of memory translation on global memory
access latency. We also investigated the presence of caches. No
caching effects were observed.

H. Texture Memory

Texture memory is a cached, read-only, globally-visible
memory space. In graphics rendering, textures are often two-
dimensional and exhibit two-dimensional locality. CUDA sup-
ports one-, two-, and three-dimensional textures. We measure
the cache hierarchy of the one-dimensional texture bound to a
region of linear memory. Our code performs dependent texture
fetches from a texture, similar to Listings 1 and 2. Figure 10
shows the presence of two levels of texture caching using a
stride of 64 bytes, showing 5 KB and 256 KB for L1 and L2
cache sizes, respectively.

We expect the memory hierarchy for higher-dimension (2D
and 3D) textures not to be significantly different. 2D spatial
locality is typically achieved by rearranging texture elements
in “tiles” using an address computation, rather than requiring
specialized caches [8]–[10].

1) Texture L1 Cache: The texture L1 cache is 5 KB 20-way
set-associative with 32 byte cache lines. Figure 11 focuses
on the first latency increase at 5 KB and shows results with
an eight byte stride. A 256-byte way size for a 5 KB cache
implies 20-way set associativity. We see that the L1 hit latency
(261 clocks) is more than half that of main memory (499
clocks), consistent with the Programming Guide’s statement
that texture caches do not reduce fetch latency but do reduce
DRAM bandwidth demand.

2) Texture L2 Cache: The texture L2 cache is 256 KB 8-way
set associative with 256-byte cache lines. Figure 10 shows a
way size of 32 KB for a 256 KB cache, implying 8-way set

Fig. 11: Texture L1 Cache. 5 KB, 20-way, 32-byte lines. Measured using 8-byte
stride. Maximum and minimum average latency over all TPC placements are
also shown: L2 has TPC placement-dependent latency.

Fig. 12: Texture L2 Cache. 256 KB, 8-way, 256-byte lines. Measured using
64-byte stride.

associativity. Figure 12 zooms in on the previous graph near
256 KB to reveal the presence of latency steps that indicate a
256-byte cache line size. We can also see in Figure 11 that the
L2 texture cache has TPC placement-dependent access times,
suggesting the L2 texture cache does not reside within the TPC.

I. Memory Translation

We investigate the presence of TLBs using stride-accessed
dependent reads, similar to Listings 1 and 2. Measuring TLBs
parameters is similar to measuring caches, but with increased
array sizes and larger strides comparable to the page size.
Detailed TLB results for both global and texture memory are
presented in Sections IV-I1 and IV-I2 respectively.

1) Global Memory Translation: Figure 13 shows that there
are two TLB levels for global memory. The L1 TLB is fully-
associative, holding mappings for 8 MB of memory, containing
16 lines with a 512 KB TLB line size. The 32 MB L2 TLB
is 8-way set associative, with a 4 KB line size. We use the
term TLB size to refer to the total size of the pages that can
be mapped by the TLB, rather than the raw size of the entries
stored in the TLB. For example, an 8 MB TLB describes a TLB
that can cache 2 K mappings when the page size is 4 KB. If,

Fig. 13: Global Memory. 8 MB fully-associative L1 and 32 MB 8-way L2
TLBs. Measured using 512 KB stride.

Fig. 14: Global L1 TLB. 16-way fully-associative with 512 KB line size.

in addition, the TLB line size were 512 KB, the TLB would be
organized in 16 lines with 128 mappings of consecutive pages
per line.

In Figure 13, the first latency plateau at∼440 cycles indicates
an L1 TLB hit (global memory read latency as measured in
Section IV-G). The second plateau at ∼487 cycles indicates an
L2 TLB hit, while an L2 TLB miss takes ∼698 cycles. We
measure the 16-way associativity of the L1 TLB by accessing
a fixed number of elements with varying strides. Figure 14
depicts the results when 16 and 17 array elements are accessed.
For large strides, where all elements map to same cache set
(e.g., 8 MB), accessing 16 elements always experiences L1
TLB hits, while accessing 17 elements will miss the L1 TLB
at 512 KB stride and up. We can also see that the L1 TLB has
only one cache set, implying it is fully-associative with 512 KB
lines. If there were at least two sets, then when the stride is
not a power of two and is greater than 512 KB (the size of a
cache way), some elements would map to different sets. When
17 elements are accessed, they would not be all mapped to
the same set, and there would be some stride for which no L1
misses occur. We never see L1 TLB hits for strides beyond
512 KB (e.g., 608, 724, and 821 KB). However, we can see (at
strides beyond 4 MB) that the L2 TLB is not fully-associative.

Figure 13 shows that the size of an L2 TLB way is 4 MB (32

Fig. 15: Global L2 TLB. 4 KB TLB line size.

Fig. 16: Texture Memory. 8 MB fully-associative L1 TLB and 16 MB 8-way
L2 TLB. 544 clocks L1 and 753 clocks L2 TLB miss. Measured using 256 KB
stride.

to 36 MB; see Section III-B). With an L2 TLB size of 32 MB,
the associativity of the L2 TLB is eight. Extending the test did
not find evidence of multi-level paging.

Although the L1 TLB line size is 512 KB, the L2 TLB
line size is a smaller 4 KB. We used a microbenchmark that
uses two sets of 10 elements (20 total) with each element
separated by a 2 MB stride. The two sets of elements are
separated by 2 MB+offset. The ith element has address (i <
10)?(i×2 MB) : (i×2 MB+offset). We need to access more
than 16 elements to prevent the 16-way L1 TLB from hiding the
accesses. Since the size of an L2 TLB way is 4 MB and we use
2 MB strides, our 20 elements map to two L2 sets when offset is
zero. Figure 15 shows the 4 KB L2 TLB line size. When offset
is zero, our 20 elements occupy two sets, 10 elements per set,
causing conflict misses in the 8-way associative L2 TLB. As
offset is increased beyond the 4 KB L2 TLB line size, having
5 elements per set no longer causes conflict misses in the L2
TLB.

Although the page size can be less than the 4 KB L2 TLB
line size, we believe a 4 KB page size is a reasonable choice.
We note that the Intel x86 architecture uses multi-level paging
with mainly 4 KB pages, while Intel’s family of GPUs uses
single-level 4 KB paging [9], [11].

Fig. 17: Constant Memory. 2 KB L1, 8 KB 4-way L2, 32 KB 8-way L3 caches.
Measured using 256-byte stride. Maximum and minimum average latency over
all TPC placements are also shown: L3 has TPC placement-dependent latency.

Fig. 18: Constant L1 cache. 2 KB, 4-way, 64-byte lines. Measured using 16-byte
stride.

2) Texture Memory Translation: We used the same method-
ology as in Section IV-I1 to compute the configuration param-
eters of the texture memory TLBs. The methodology is not
repeated here for the sake of brevity. Texture memory contains
two levels of TLBs, with 8 MB and 16 MB of mappings, as
seen in Figure 16 with 256 KB stride. The L1 TLB is 16-way
fully-associative with each line holding translations for 512 KB
of memory. The L2 TLB is 8-way set associative with a line
size of 4 KB. At 512 KB stride, the virtually-indexed 20-way
L1 texture cache hides the features of the L1 texture TLB. The
access latencies as measured with 512 KB stride are 497 (TLB
hit), 544 (L1 TLB miss), and 753 (L2 TLB miss) clocks.

J. Constant Memory

There are two segments of constant memory: one is user-
accessible, while the other is used by compiler-generated con-
stants (e.g., comparisons for branch conditions) [4]. The user-
accessible segment is limited to 64 KB.

The plot in Figure 17 shows three levels of caching of sizes
2 KB, 8 KB, and 32 KB. The measured latency includes the
latency of two arithmetic instructions (one address computation
and one load), so the raw memory access time would be roughly
48 cycles lower (8, 81, 220, and 476 clocks for an L1 hit, L2

Fig. 19: Constant L3 cache bandwidth. 9.75 bytes per clock.

hit, L3 hit, and L3 miss, respectively). Our microbenchmarks
perform dependent constant memory reads, similar to Listings
1 and 2.

1) Constant L1 Cache: A 2 KB L1 constant cache is located
in each SM (See Section IV-J4). The L1 has a 64-byte cache
line size, and is 4-way set associative with eight sets. The way
size is 512 bytes, indicating 4-way set associativity in a 2 KB
cache. Figure 18 shows these parameters.

2) Constant L2 Cache: An 8 KB L2 constant cache is
located in each TPC and is shared with instruction memory
(See Sections IV-J4 and IV-J5). The L2 cache has a 256-byte
cache line size and is 4-way set associative with 8 sets. The
region near 8,192 bytes in Figure 17 shows these parameters.
A 2 KB way size in an 8 KB cache indicates an associativity
of four.

3) Constant L3 Cache: We observe a 32 KB L3 constant
cache shared among all TPCs. The L3 cache has 256-byte cache
lines and is 8-way set associative with 16 sets. We observe
cache parameters in the region near 32 KB in Figure 17. The
minimum and maximum access latencies for the L3 cache
(Figure 17, 8-32 KB region) differ significantly depending on
which TPC executes the test code. This suggests that the L3
cache is located on a non-uniform interconnect that connects
TPCs to L3 cache and memory. The latency variance does not
change with increasing array size, even when main memory is
accessed (array size > 32 KB), suggesting that L3 cache is
located near the main memory controllers.

We also measure the L3 cache bandwidth. Figure 19 shows
the aggregate L3 cache read bandwidth when a varying
number of blocks make concurrent L3 cache read requests,
with the requests within each thread being independent. The
observed aggregate bandwidth of the L3 constant cache is
∼9.75 bytes/clock when running between 10 and 20 blocks.

We run two variants of the bandwidth tests: one variant using
one thread per block and one using eight to increase constant
cache fetch demand within a TPC. Both tests show similar
behavior below 20 blocks. This suggests that when running
one block, an SM is only capable of fetching ∼1.2 bytes/clock
even with increased demand within the block (from multiple
threads). The measurements are invalid above 20 blocks in the

Fig. 20: Constant Memory Sharing. Per-SM L1 cache, per-TPC L2, global L3.
Measured using 256-byte stride.

Fig. 21: Constant Memory Instruction Cache Sharing. L2 and L3 caches are
shared with instructions. Measured using 256-byte stride.

eight-thread case, as there are not enough unique data sets and
the per-TPC L2 cache hides some requests from the L3, causing
apparent aggregate bandwidth to increase. Above 30 blocks,
some SMs run more than one block causing load imbalance.

4) Cache Sharing: The L1 constant cache is private to each
SM, the L2 is shared among SMs on a TPC, and the L3
is global. This was tested by measuring latency using two
concurrent blocks with varying placement (same SM, same
TPC, two different TPCs). The two blocks will compete for
shared caches, causing the observed cache size to be halved.
Figure 20 shows the results of this test. In all cases, the
observed cache size is halved to 16 KB (L3 is global). With
two blocks placed on the same TPC the observed L2 cache size
is halved to 4 KB (L2 is per-TPC). Similarly, with two blocks
on the same SM, the observed L1 cache size is halved to 2 KB
(L1 is per-SM).

5) Cache Sharing with Instruction Memory: It has been
suggested that part of the constant cache and instruction cache
hierarchies are unified [12], [13]. We find that the L2 and L3
caches are indeed instruction and constant caches, while the L1
caches are single-purpose. Similar to Section IV-J4, we measure
the interference between instruction fetches and constant cache
fetches with varying placements. The result is plotted in Figure
21. The L1 access times are not affected by instruction fetch

Fig. 22: Instruction Cache Latency. 8 KB 4-way L2, 32 KB 8-way L3. This
test fails to detect the 4 KB L1 cache.

Fig. 23: Instruction L1 cache. 4 KB, 4-way, 256-byte lines. Contention for the
L2 cache is added to make L1 misses visible. Maximum and minimum average
latency over all TPC placements are also shown: L3 has TPC placement-
dependent latency.

demand even when the blocks run on the same SM, so the L1
caches are single-purpose.

K. Instruction Supply

We detect three levels of instruction caching, of sizes 4 KB,
8 KB, and 32 KB, respectively (plotted in Figure 22). The
microbenchmark code consists of differently-sized blocks of
independent 8-byte arithmetic instructions (abs) to maximize
fetch demand. The 8 KB L2 and 32 KB L3 caches are visible
in the figure, but the 4 KB L1 is not, probably due to a
small amount of instruction prefetching that hides the L2 access
latency.

1) L1 Instruction Cache: The 4 KB L1 instruction cache
resides in each SM, with 256-byte cache lines and 4-way set
associativity.

The L1 cache parameters were measured (Figure 23) by
running concurrent blocks of code on the other two SMs on
the same TPC to introduce contention for the L2 cache, so L1
misses beginning at 4 KB do not stay hidden as in Figure 22.
The 256-byte line size is visible, as well as the presence of
4 cache sets. The L1 instruction cache is per-SM. When other
SMs on the same TPC flood their instruction cache hierarchies,

Fig. 24: Instruction fetch size. The SM appears to fetch from the L1 cache in
blocks of 64 bytes. The code spans three 256-byte cache lines, with boundaries
at 160 and 416 bytes.

the instruction cache size of 4 KB for the SM being observed
does not decrease.

2) L2 Instruction Cache: The 8 KB L2 instruction cache
is located on the TPC, with 256-byte cache lines and 4-way
set associativity. We have shown in Section IV-J5 that the L2
instruction cache is also used for constant memory. We have
verified that the L2 instruction cache parameters match those
of the L2 constant cache, but omit the results due to space
constraints.

3) L3 Instruction Cache: The 32 KB L3 instruction cache is
global, with 256-byte cache lines and 8-way set associativity.
We have shown in Section IV-J5 that the L3 instruction cache is
also used for constant memory, and have verified that the cache
parameters for instruction caches match those for constant
memory.

4) Instruction Fetch: The SM appears to fetch instructions
from the L1 instruction cache 64 bytes at a time (8-16 in-
structions). Figure 24 shows the execution timeline of our
measurement code, consisting of 36 consecutive clock() reads
(72 instructions), averaged over 10,000 executions of the mi-
crobenchmark.

While one warp runs the measurement code, seven “evicting
warps” running on the same SM repeatedly evict the region
indicated by the large points in the plot, by looping through
24 instructions (192 bytes) that cause conflict misses in the
instruction cache. The evicting warps will repeatedly evict a
cache line used by the measurement code with high probability,
depending on warp scheduling. The cache miss latency caused
by an eviction will be observed only at instruction fetch
boundaries (160, 224, 288, 352, and 416 bytes in Figure 24).

We see that a whole cache line (spanning the code region
160-416 bytes) is evicted when a conflict occurs and that the
effect of a cache miss is only observed across, but not within,
blocks of 64 bytes.

V. RELATED WORK

Microbenchmarking has been used extensively in the past
to determine the hardware organization of various processor
structures. We limit our attention to work targeting GPUs.

Volkov and Demmel benchmarked the 8800GTX GPU, the
predecessor of the GT200 [7]. They measured characteristics of
the GPU relevant to accelerating dense linear algebra, revealing
the structure of the texture caches and one level of TLBs.
Although they used the previous generation hardware, their
measurements generally agree with ours. We focus on the
microarchitecture of the GPU, revealing an additional TLB
level and caches, and the organization of the processing cores.

GPUs have also been benchmarked for performance analysis.
An example is GPUBench [14], a set of microbenchmarks
written in the OpenGL ARB shading language that measures
some of the GPU instruction and memory performance char-
acteristics. The higher-level ARB shading language is further
abstracted from the hardware than CUDA, making it difficult
to infer detailed hardware structures from the results. However,
the ARB shading language offers vendor-independence, which
CUDA does not.

Currently, specifications of Nvidia’s GPUs and CUDA op-
timization techniques come from the manufacturer [1], [3].
Studies on optimization (e.g., [15]) as well as performance
simulators (e.g., [2]) rely on these published specifications. We
present more detailed parameters, which we hope will be useful
in improving the accuracy of these studies.

VI. SUMMARY AND CONCLUSIONS

This paper presented our analysis of the Nvidia GT200 GPU
and our measurement techniques. Our suite of microbench-
marks revealed architectural details of the processing cores and
the memory hierarchies. A GPU is a complex device, and it is
impossible that we reverse-engineer every detail. We believe
we have investigated an interesting subset of features. Table V
summarizes our architectural findings.

Our results validated some of the hardware characteristics
presented in the CUDA Programming Guide [1], but also re-
vealed the presence of some undocumented hardware structures
such as mechanisms for control flow and caching and TLB
hierarchies. In addition, in some cases our findings deviated
from the documented characteristics (e.g., texture and constant
caches).

We also presented our techniques for our architectural anal-
ysis. We believe that these techniques will be useful for the
analysis of other GPU-like architectures and validation of GPU-
like performance models.

The ultimate goal is to know the hardware better, so that we
can harvest its full potential.

REFERENCES

[1] Nvidia, “Compute Unified Device Architecture Programming
Guide Version 2.0,” http://developer.download.nvidia.com/compute/
cuda/2 0/docs/NVIDIA CUDA Programming Guide 2.0.pdf.

[2] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE
International Symposium on, April 2009, pp. 163–174.

[3] Nvidia, “NVIDIA GeForce GTX 200 GPU Architectural
Overview,” http://www.nvidia.com/docs/IO/55506/GeForce GTX 200
GPU Technical Brief.pdf, May 2008.

Arithmetic Pipeline
Latency (clocks) Throughput (ops/clock)

SP 24 8
SFU 28 2 (4 for MUL)
DPU 48 1

Pipeline Control Flow

Branch Divergence Diverged paths are serialized.
Reconvergence is handled via a stack.

Barrier
Synchronization

syncthreads() works at warp granularity.
Warps wait at the barrier until all other warps

execute syncthreads() or terminate.

Memories
Register File 16 K 32-bit registers, 64 logical banks per SM

Instruction

L1: 4 KB, 256-byte line, 4-way, per-SM
L2: 8 KB, 256-byte line, 4-way, per-TPC
L3: 32 KB, 256-byte line, 8-way, global
L2 and L3 shared with constant memory

Constant

L1: 2 KB, 64-byte line, 4-way, per-SM, 8 clk
L2: 8 KB, 256-byte line, 4-way, per-TPC, 81 clk
L3: 32 KB, 256-byte line, 8-way, global, 220 clk

L2 and L3 shared with instruction memory

Global

∼436-443 cycles read latency
4 KB translation page size

L1 TLB: 16 entries, 128 pages/entry, 16-way
L2 TLB: 8192 entries, 1 page/entry, 8-way

Texture

L1: 5 KB, 32-byte line, 20-way, 261 clk
L2: 256 KB, 256-byte line, 8-way, 371 clk

4 KB translation page size
L1 TLB: 16 entries, 128 pages/entry, 16-way
L2 TLB: 4096 entries, 1 page/entry, 8-way

Shared 16 KB, 38 cycles read latency

TABLE V: GT200 Architecture Summary

[4] ——, “The CUDA Compiler Driver NVCC,” http://www.nvidia.com/
object/io 1213955090354.html.

[5] W. J. van der Laan, “Decuda,” http://wiki.github.com/laanwj/decuda/.
[6] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:

A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[7] V. Volkov and J. W. Demmel, “Benchmarking GPUs to Tune Dense Lin-
ear Algebra,” in SC ’08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–11.

[8] Z. S. Hakura and A. Gupta, “The Design and Analysis of a Cache
Architecture for Texture Mapping,” SIGARCH Comput. Archit. News,
vol. 25, no. 2, pp. 108–120, 1997.

[9] Intel, G45: Volume 1a Graphics Core, Intel 965G Express Chipset
Family and Intel G35 Express Chipset Graphics Controller Programmer’s
Reference Manual (PRM), January 2009.

[10] AMD, ATI CTM Guide, Technical Reference Manual.
[11] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual,

Volume 3A: System Programming Guide, Part 1, September 2009.
[12] H. Goto, “Gt200 over view,” http://pc.watch.impress.co.jp/

docs/2008/0617/kaigai 10.pdf, 2008.
[13] D. Kirk and W. W. Hwu, “ECE 489AL Lectures 8-9:

The CUDA Hardware Model,” http://courses.ece.illinois.edu/
ece498/al/Archive/Spring2007/lectures/lecture8-9-hardware.ppt, 2007.

[14] I. Buck, K. Fatahalian, and M. Houston, “GPUBench,”
http://graphics.stanford.edu/projects/gpubench/.

[15] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. W. Hwu, “Optimization Principles and Application Performance
Evaluation of a Multithreaded GPU using CUDA,” in PPoPP ’08:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. New York, NY, USA: ACM, 2008,
pp. 73–82.

