Quantifying the Gap Between FPGA and Custom
CMOS to Aid Microarchitectural Design

Henry Wong, Vaughn Betz, Jonathan Rose

Abstract—This paper compares the delay and area of a
comprehensive set of processor building block circuits when
implemented on custom CMOS and FPGA substrates. These
results can be used to guide the microarchitectural design of
many structures. We focus on the microarchitecture of soft
processors on FPGAs and show how soft processor microarchi-
tectures should be different from those of the more extensively-
studied hard processors on custom CMOS.

We find that the ratios of the custom CMOS vs. FPGA area
for different building blocks varies considerably more than the
speed ratios. As area is often a key design constraint in FPGA
circuits, area ratios have the most impact on microarchitecture
choices. Complete processor cores on an FPGA use 17-27 x more
area (“‘area ratio”’) and have 18-26 x greater delay (‘““delay ratio”)
than the same design implemented in custom CMOS. Building
blocks with dedicated hardware support on FPGAs such as
SRAMs, adders, and multipliers are particularly area-efficient
(2-7x area ratio), while multiplexers and content-addressable
memories (CAM) are particularly area-inefficient (>100x area
ratio). We also find a low delay ratio for pipeline latches (12-19x).

Applying these results, we find that FPGA soft processors
should have 20% deeper pipelines than equivalent custom CMOS
processors. Soft processors can have higher capacity caches,
but should avoid CAM-based fully-associative caches. Out of
order soft processors should consider using physical register file
organizations to minimize CAM size and RAM port counts.

I. INTRODUCTION

The area, speed, and energy consumption of a digital circuit
will differ when it is implemented on different substrates such
as custom CMOS, standard cell ASICs, and FPGAs. Those
differences will also change based on the nature of the digital
circuit itself. Having different cost ratios for different circuit
types implies that systems built using a range of different
circuit types must be tuned for each substrate. In this paper,
we compare the custom CMOS and FPGA substrates with
a focus on implementing instruction-set processors — we
examine both full processors and sub-circuits commonly used
by processors, and explore the microarchitecture trade-off
space of soft processors in light of these differences.!

We believe this is a timely exercise, as the plausible
area budget for soft processors is now much greater than

Manuscript received [date]... This work was supported in part by NSERC
and Altera.

Department of Electrical and Computer Engineering, University of Toronto,
10 King’s College Road, Toronto, Ontario, M5S 3G4. {henry, vaughn,
jayar} @eecg.utoronto.ca

DOI: [number]

'An earlier version of this paper appeared in [1] which contained fewer
circuit-level comparisons and less microarchitectural discussion. We have also
significantly elaborated on the data in our discussions of the results, and added
a section related to the effect of routing congestion in FPGAs.

it was when the first successful commercial soft processors
were architected and deployed [2], [3]. Those first processors
typically used less than a few thousand logic elements and
have mostly employed single-issue in-order microarchitectures
due to a limited area budget. Since then, the size of FPGAs
available has grown by one to two orders of magnitude, pro-
viding more space for more complex microarchitectures, if the
increased complexity can achieve payoffs in performance. The
design decisions that will be required to build more complex
processors can benefit from a quantitative understanding of the
differences between custom CMOS and FPGA substrates.
Previous studies have measured the average delay and area
of FPGA, standard cell, and custom CMOS substrates across
a large set of benchmark circuits [4], [5]. While these earlier
results are useful in determining an estimate of the size and
speed of the full system that can be implemented on FPGAs,
it is often necessary to compare the relative performance of
specific types of “building block™ circuits in order to have
enough detail to guide microarchitecture design decisions.
This paper makes two contributions:

1) We compare the delay and area of custom CMOS and
FPGA implementations of a specific set of building
block circuits typically used in processors.

2) Based on these measured delay and area ratios, and
prior custom CMOS processor microarchitecture knowl-
edge, we discuss how processor microarchitecture design
trade-offs should change on an FPGA substrate.

We begin with a survey of prior work in Section II and
describe our methodology in Section III. We then present the
building block comparisons in Section IV and their impact on
microarchitecture in Section V, and conclude in Section VI.

II. BACKGROUND
A. Technology Impact on Microarchitecture

One of the goals in processor microarchitecture design
is to make use of circuit structures that are best suited to
the underlying implementation technology. Thus, studies on
how process technology trends impact microarchitecture are
essential for designing effective microarchitectures that best
fit the ever-changing process characteristics. Issues currently
facing CMOS technology include poor wire delay scaling,
high power consumption, and more recently, process variation.
Microarchitectural techniques that respond to these challenges
include clustered processor microarchitectures and chip mul-
tiprocessors [6], [7].

Circuits implemented on an FPGA substrate face a very
different set of constraints from custom CMOS. Although

power consumption is important, it is not currently the dom-
inant design constraint for FPGA designs. FPGA designs run
at lower clock speeds and the architectures of FPGAs are
already designed to give reasonable power consumption across
the vast majority of FPGA user designs. Interestingly, area
is often the primary constraint due to high area overhead
of the programmability endemic to FPGAs. This different
perspective, combined with the fact that different structures
have varying area, delay, and power characteristics between
different implementation technologies mean that understand-
ing and measuring these differences is required to make
good microarchitecture choices to suit the FPGA substrate.
Characteristics such as inefficient multiplexers and the need
to map RAM structures into FPGA hard SRAM blocks are
known and are generally adjusted for by modifying circuit-
level, but not microarchitecture-level, design [8]-[11].

B. Measurement of FPGAs

Kuon and Rose have measured the area, delay, and power
overheads of FPGAs compared to a standard cell ASIC flow
on 90 nm processes [4]. They used a benchmark set of com-
plete circuits to measure the overall impact of using FPGAs
compared to ASICs and the effect of FPGA hard blocks.
They found that circuits implemented on FPGAs consumed
35x more area than on standard cell ASIC for circuits that
did not use hard memory or multiplier blocks, to a low of
18 x for those that used both types. The minimum cycle time
(their measure of speed) of the FPGA circuits ranged from
3.0 to 3.5x greater than that of the ASIC implementations,
and were not significantly affected by hard blocks. Chinnery
and Keutzer [5] made similar comparisons between standard
cell and custom CMOS and reported a delay ratio of 3 to
8x. Combined, these reports suggest that the delay of circuits
implemented on an FPGA would be 9 to 28 greater than
on custom CMOS. However, data for full circuits are insuf-
ficiently detailed to guide microarchitecture-level decisions,
which is the focus of this paper.

III. METHODOLOGY

We seek to measure the delay and area of FPGA building
block circuits and compare them against their custom CMOS
counterparts, resulting in area ratios and delay ratios. We
define these ratios to be the area or delay of an FPGA circuit
divided by the area or delay of the custom CMOS circuit.
A higher ratio means the FPGA implementation is worse. We
compare several complete processor cores and a set of building
block circuits against their custom CMOS implementations,
then observe which types of building block circuits have
particularly high or low overhead on an FPGA.

As we do not have the expertise to implement highly-
optimized custom CMOS circuits, most of our building block
circuit comparisons use data from custom CMOS implemen-
tations found in the literature. We focus mainly on custom
CMOS designs built in 65 nm processes, because it is the most
recent process where design examples are readily available in
the literature. The custom CMOS data is compared to an Altera
Stratix III 65 nm FPGA. In most cases, the equivalent FPGA

TABLE 1
NORMALIZATION FACTORS BETWEEN PROCESSES

90nm 65nm 45 nm

Area 0.5 1.0 2.0
Delay 0.78 1.0 1.23
TABLE II

STRATIX III FPGA RESOURCE AREA USAGE

Resource Relative Area Tile Area
(Equiv. LABs) (mm?)
LAB 1 0.0221
ALUT (half-ALM) 0.05 0.0011
MO9K memory 2.87 0.0635
M144K memory 26.7 0.5897
DSP block 11.9 0.2623
Total core area 18621 412

circuits were implemented on an FPGA using the standard
FPGA CAD flows. Power consumption is not compared due
to the scarcity of data in the literature and the difficulty in
standardizing testing conditions such as test vectors, voltage,
and temperature.

We normalize area measurements to a 65 nm process using
an ideal scale factor of 0.5 area between process nodes. We
normalize delay using published ring oscillator data, with the
understanding that these reflect gate delay scaling more than
interconnect scaling. Intel reports 29% fanout-of-one (FOI1)
delay improvement between 90 nm and 65 nm, and 23% FO2
delay improvement between 65 nm and 45 nm [12], [13]. The
area and delay scaling factors used are summarized in Table I.

Delay is measured as the longest register to register path
(sequential) or input to output path (combinational) in a circuit.
In papers that describe CMOS circuits embedded in a larger
unit (e.g., a shifter inside an ALU), we conservatively assume
that the subcircuit has the same cycle time as the larger unit.
In FPGA circuits, delay is measured using register to register
paths, with the register delay subtracted out when comparing
subcircuits that do not include a register (e.g., wire delay).

To measure FPGA resource usage, we use the “logic uti-
lization” metric as reported by Quartus rather than raw LUT
count, as it includes an estimate of how often a partially used
fracturable logic element can be shared with other logic. We
count partially-used memory and multiplier blocks as entirely
used since it is unlikely another part of the design can use a
partially-used memory or multiplier block. Table II shows the
areas of the Stratix III FPGA resources. The FPGA tile areas
include the area used by the FPGA routing network so we do
not track routing resource use separately. The core of the the
largest Stratix III (EP3LS340) FPGA contains 13 500 clusters
(Logic Array Block, LAB) of 10 logic elements (Adaptive
Logic Module, ALM) each, 1040 9-kbit (M9K) memories,
48 144-kbit (M144K) memories, and 72 DSP blocks, for a
total of 18621 LAB equivalent areas and 412 mm? core area.

We implemented FPGA circuits using Altera Quartus II

10.0 SP1 CAD flow and employed the fastest speed grade
of the largest Stratix III device. We set timing constraints
to maximize clock speed, reflecting the use of these circuits
as part of a larger circuit in the FPGA core, such as a soft
processor.

A. Additional Limitations

The trade-off space for a given circuit structure on custom
CMOS is huge as there are many transistor-level implemen-
tations for a given a function — the delay, area, power, and
design effort can all be traded-off, resulting in vastly different
circuit performance. The data extracted from the literature is
from circuit designers that would have had different optimiza-
tion targets. However, we assume that designs published in the
literature are optimized primarily for delay with reasonable
values for the other metrics and we implement our FPGA
equivalents with the same approach. We note that the design
effort spent on custom CMOS designs are likely to be much
higher than for FPGA designs, because there is more potential
gain for increased optimization effort, and much of the design
process is automated for FPGA designs.

IV. Custom CMOS vs. FPGA
A. Complete Processor Cores

We begin by comparing complete processor cores imple-
mented on an FPGA vs. custom CMOS to provide context
for the subsequent building block measurements. Table III
shows a comparison of the area and delay of four com-
mercial processors that have both custom CMOS and FPGA
implementations, including in-order, multithreaded, and out-
of-order processors. The FPGA implementations are synthe-
sized from RTL code for the custom CMOS processors, with
some FPGA-specific circuit-level optimizations. However, the
FPGA-specific optimization effort is smaller than for custom
CMOS designs and could inflate the area and delay ratios
slightly.

The OpenSPARC T1 and T2 cores are derived from the
Sun UltraSPARC T1 and T2, respectively [19]. Both cores
are in-order multithreaded (4 threads for the T1, 8 threads for
the T2), and use the 64-bit SPARC V9 instruction set. The
OpenSPARC T2 processor core includes a floating-point unit.
We synthesized one processor core for the Stratix III FPGA.
We removed some debug features that are necessary in custom
implementations but unused in FPGA designs, such as register
scan chains and SRAM redundancy in the caches.

The Intel Atom is a dual-issue in-order 64-bit x86 processor
with two-way multithreading. Because the source code is
not publicly available, our Atom processor comparisons use
published FPGA synthesis results by Wang et al. [10]. Their
FPGA synthesis includes only the processor core without L2
cache, and occupies 85% of the largest 65 nm Virtex-5 FPGA
(XC5VLX330). They do not publish a detailed breakdown of
the FPGA resource utilization, so the FPGA area is estimated
assuming the core area of the largest Virtex 5 is the same as
the largest Stratix III.

The Intel Nehalem is a out-of-order 64-bit x86 processor
with two-way multithreading. Like the Intel Atom, the source

code is not publicly available. The FPGA synthesis by Schelle
et al. [17] includes the processor core and does not include the
per-core L2 cache. They report an area utilization of roughly
300% of the largest Virtex-5 FPGA, but do not publish more
detailed resource usage data. They partitioned the processor
core across five FPGAs and time-multiplex the communication
between FPGAs, so the resulting clock speed (520 kHz) is not
useful for estimating delay ratio.

Table IIT compares the four processors’ speed and area. For
custom CMOS processors, the highest commercially-available
speed is listed, scaled to a 650 nm process using linear delay
scaling as described in Section III. The area of a custom
CMOS processor is measured from die photos, including
only the area of the processor core that the FPGA version
implements, again scaled using ideal area scaling to a 65 nm
process. The sixth and seventh columns contain the speed and
area ratio between custom CMOS and FPGA, with higher
ratios meaning the FPGA is worse.

For the two OpenSPARC processors, FPGA area is mea-
sured using the resource usage (ALUT logic utilization, DSP
blocks, and RAM) of the design reported by Quartus mul-
tiplied by the area of each resource in Table II. The FPGA
synthesis of the Intel processors use data from the literature
which only gave approximate area usage, so we list the logic
utilization as a fraction of the FPGA chip.

Overall, custom processors have delay ratios of 18-26x
and area ratios of 17-27x. We use these processor core
area and delay ratios as a reference point for the building
block circuit comparisons in the remainder of this paper. For
each building block circuit, we compare the FPGA vs custom
CMOS area and delay ratios for the building block circuit to
the corresponding ratios for processor cores to judge whether
a building block circuit’s area and delay are better or worse
than the overall ratios for a processor core.

Interestingly, there is no obvious area ratio trend with
processor complexity — for example, we might expect that an
out-of-order processor synthesized for an FPGA, such as the
Nehalem, to have a particularly high area ratio, but it does not.
We speculate that this is because expensive CAMs are only
a small portion of the hardware added by a high-performance
microarchitecture. The added hardware includes a considerable
amount of RAM and other logic, since modern processor
designs already seek to minimize the use of CAMs due to their
high power consumption. On the FPGA-synthesized Nehalem,
the hardware structures commonly associated with out-of-
order execution (reorder buffer, reservation stations, register
renaming) consume around 45% of the processor core’s LUT
usage. [17]

B. SRAM Blocks (Low Port Count)

SRAM blocks are commonly used in processors for building
caches and register files. SRAM performance can be char-
acterized by latency and throughput. Custom CMOS SRAM
designs can trade latency and throughput by pipelining, while
FPGA designs are limited to the pre-fabricated SRAM blocks
on the FPGA.

Logical SRAMs targeting the Stratix III FPGA can be
implemented in four different ways: using one of the two

TABLE III
COMPLETE PROCESSOR CORES. AREA AND DELAY NORMALIZED TO 65 NM.

Custom CMOS FPGA Ratios FPGA Resource Utilization
Processor finax Area fomax Area f. Area Utilization ALUT Reg- MOIK DSP
(MHz) (mm?) (MHz) (mm?) (ALUT) isters
SPARC T1 (90 nm) [14] 1800 6.0 79 100 23 17 86597 54745 54950 66 1
SPARC T2 (65 nm) [15] 1600 11.7 88 294 18 25 250235 163524 116085 275 O
Atom (45 nm) [10], [16] >1300 12.8 50 350 26 27 —— 85% of Virtex-5 LX330 ——
Nehalem (45 nm) 1171, 1187 3000 51 - 1240 - 24 —— 300% of Virtex-5 LX330 ——
Geometric Mean 22 23
10000 5 1000 MMNNM?.MMMM L]
o0 n B MM L e®ede®e®e
IR] - o ® * S
o0 100 / 4
= o0 0 = u /
= B Custom CMOS g
Z1000 ¢ Cactis31rw EDR e oe bbb B Custom CMOS
® ¥ Stratix = @ Cacti 5.3 2rw
x - D = 7 M Cac 3 1w
= i P Stratix IV MLAB] ’ F Stratix Il M144K
4 -] < Stratix |11 Registers g 1 4 =& Stratix |1l MOK
NN s B> Stratix IV MLAB
N <t Stratix Il
Registers
100 0
0.03 0.5 8 128 2048 32768 524288 0.03 05 8 128 2048 32768 524288
Memory Size (kbit) Memory Size (kbit)
Fig. 1. SRAM Throughput Fig. 2. SRAM Density

physical sizes of hard block SRAM, using the LUT RAMs
in Memory LABs (MLABs allow the lookup tables in a
LAB to be converted into a small RAM), or in registers
and LUTs. The throughput and density of the four methods
of implementing RAM storage are compared in Table IV to
five high-performance custom SRAMs in 65 nm processes.
In this section, we focus on RAMs with one read-write port
(which we will refer to as 1rw), as it is a commonly-used
configuration in larger caches in processors, but some custom
CMOS SRAMs have unusual port configurations, such as
being able to do two reads or one write [20]. The size column
lists the size of the SRAM block. For MLAB (LUT RAM,
640 bit), MIK (block RAM, 9 kbit), and M144K (block RAM,
144 kbit) FPGA memories, memory size indicates the capacity
of the memory block type. The f,,.x and area columns list the
maximum clock speed and area of the SRAM block. Because
of the large variety of SRAM block sizes, it is more useful to
compare bit density. The last two columns of the table list f;,,x
and bit density ratios between custom CMOS SRAM blocks
and an FPGA implementation of the same block size on an
FPGA. Higher density ratios indicate worse density on FPGA.

The density and throughput of custom CMOS and FPGA
SRAMs listed in Table IV are plotted against memory size
in Figs. 1 and 2. The plots include data from CACTI 5.3, a
CMOS memory performance and area model [26]. There is
good agreement between the CACTI models and the design
examples from the literature, although CACTTI appears to be
slightly more conservative.

The throughput ratio between FPGA memories and custom

is 7-10x, lower than the overall delay ratio of 18-26x,
showing that SRAMs are relatively fast on FPGAs. It is
surprising that this ratio is not even lower because FPGA
SRAM blocks have little programmability. The 2 kbit MLAB
(64x32) memory has a particularly low delay because its 64-
entry depth uses the 64x10 mode of the MLAB, allowing
both its input and output registers to be packed into the same
LAB as the memory itself (each LAB has 20 registers), yet it
does not need external multiplexers to stitch together multiple
MLAB:S.

The FPGA data above use 32-bit wide data ports (often
the width of a register on 32-bit processors) that slightly
underutilize the native FPGA 36-bit ports. The raw density of a
fully-utilized FPGA SRAM block is listed in Table IV. Below
9 kbit, the bit density of FPGA RAMs falls off nearly linearly
with reducing RAM size because M9Ks are underutilized.
The MLABs use 20-bit wide ports, so a 32-bit wide memory
block always uses at least two MLABs, utilizing 80% of
their capacity. The MLAB bit density (25 kbit/mm?) is low,
although it is still much better than using registers and LUTSs
(0.76 kbit/mm?). For larger arrays with good utilization,
FPGA SRAM arrays have a density ratio of only 2-5x vs.
single read-write port (Irw)> CMOS (and CACTI) SRAMs,
far below the full processor area ratio of 17-27x.

As FPGA SRAMs use dual-ported (2rw) arrays, we also
plotted CACTI’s 2rw model for comparison. For arrays of
similar size, the bit density of CACTI’s 2rw models are 1.9x

2There are three basic types of memory ports: Read (r), write (w) and
read-write (rw). A read-write port can read or write, but not both, per cycle.

TABLE IV
CustoM CMOS AND FPGA SRAM BLOCKS

Desien Ports Size finax Area Bit Density Ratios
& (kbit) (MHz) (mm?) (kbit/mm?) fp. Density

IBM 6T 65 nm [20] 2r or 1w 128 5600 0.276 464 9.5 2.1
Intel 6T 65 nm [21] Irw 256 4200 0.3 853 7.1 3.9
Intel 6T 65 nm [22] Irw 70 Mb 3430 110 1231 820 - -
IBM 8T 65 nm SOI [24] Irlw 32 5300 - - 9.0 -
Intel 65 nm Regfile [25] Irlw 1 8800 0.017 59 15 3.7
Stratix IIT FPGA
Registers lrw - - - 0.76
MLAB Irw 0.625 450 0.025 25
MI9K lrw 9 590 0.064 142
M144K lrw 144 590 0.59 244

TABLE V

MULTIPORTED 8 KBIT SRAM. LVT DATA FROM [27]

CACTI 5.3 FPGA Ratios
Ports finax Density finax Density
(MHz) (&iL) (MHz) (2%) f. Density

2rlw 3750 177 497 63 7.6 2.8
4r2w 3430 45 228 0.25 15 179
6r3w 3270 27 214 0.20 15 140
8rdw 2950 17 178 0.15 17 109
10r5w 2680 11 168 0.11 16 104
12réw 2450 8.0 140 0.091 18 87
1417w 2250 6.1 130 0.080 17 75
16r8w 2070 4.8 126 0.064 16 74
Live Value Table (LVT)

4r2w 375 3.9 9.2 12
8rdw 280 0.98 11 17

and 1.5x the raw bit density of fully-utilized M9K and M 144K
memory blocks, respectively. This suggests that half of the bit
density gap between custom CMOS and FPGA SRAMs in
our single-ported test is due to FPGA memories paying the
overhead of dual ports.

For register file use where latency may be more important
than memory density, custom processors have the option of
trading throughput for area and power by using faster and
larger storage cells. The 65 nm Pentium 4 register file trades
decreased bit density for 9 GHz single-cycle performance [25].
FPGA RAMs lack this flexibility, and the delay ratio is even
greater (15x) for this specific use.

C. Multiported SRAM Blocks

FPGA hard SRAM blocks can typically implement up to
two read-write ports (2rw). Implementing more read ports on
an FPGA can be achieved reasonably efficiently by replicating
the memory blocks, but increasing the number of write ports is
more difficult. A multiple write port RAM can be implemented
using registers for storage and LUTs for multiplexing and

address decoding, but is inefficient. A more efficient method
using hard RAM blocks for most of the storage replicates
memory blocks for each write and read port and uses a live
value table (LVT) to indicate for each word which of the
replicated memories holds the most recent copy [27].

We present data for multiported RAMs implemented using
registers, LVT-based multiported memories from [27], and
CACTI 5.3 models of custom CMOS multiported RAMs.
Like for single-ported SRAMs (Section IV-B), we report the
random cycle time of a pipelined custom CMOS memory. We
focus on a 256x32-bit (8 kbit) memory block with twice as
many read ports as write ports (2N read, [V write) because it is
a port configuration often used in register files in processors
and the size fits well into an M9K memory block. Table V
shows the throughput and density comparisons.

The custom CMOS vs. FPGA bit density ratio is 2.8 for
2rlw, and increases to 12x and 179x for 4r2w LVT- and
register-based memories, respectively. When only one write
port is needed (2r1w), the increased area needed for duplicat-
ing the FPGA memory block to provide a second read port
is less than the area increase for tripling the number of ports
from 1rw to 2rlw of a custom CMOS RAM (445 kbit/mm?
Irw from Section IV-B to 177 kbit/mm? 2rlw). LVT-based
memories improve in density on register-based memories, but
both are worse than simple replication used for memories with
one write port and multiple read ports.

The delay ratio is 7.6x for 2rlw, and increases to 9x and
15x for 4r2w LVT- and register-based memories, respectively,
a smaller impact than the area ratio increase. The delay ratios
when using registers to implement memories (15-18x) are
higher than those for single-ported RAMs using hard RAM
blocks, but still slightly lower than the overall processor core
delay ratios.

D. Content-Addressable Memories

A Content-Addressable Memory (CAM) is a logic circuit
that allows associative searches of its stored contents. Custom
CMOS CAMs are typically implemented as dense arrays
of cells using 9-transistor (9T) to 11T cells compared to
6T used in SRAM and are typically 2-3x less dense than

TABLE VI
CAM DESIGNS

Size S.earch Bit . Ratios vs.
Time Density Soft Logic
(bits) (ns) (X2%) DelayDensity
Ternary CAMs (65 nm)
IBM 64x72 31] 4608 0.6 - 54 -
IBM 64 x240 [31] 15360 2.2 167 1.8 519
Binary CAMs (65 nm)
POWERG6 8x60 [32] 480 <02 - 14 -
Godson-3 64x64 333 4096 0.55 76 5 99
Intel 64x 128 [34] 8192 0.25 167 14 209
FPGA Ternary CAMs
Soft logic 64x72 4608 3.2 040
Soft logic 64 x240 15360 4.0 0.32
FPGA Binary CAMs
Soft logic 8x60 480 2.1 0.83
Soft logic 64x64 4096 29 0.77
Soft logic 64x128 8192 34 0.80
MLAB-CAM 64 x20 1280 4.5 1.0
MOI9K-CAM 64x16 1024 2.0 2.0

custom SRAMs. Ternary CAMs use two storage cells per
“bit” to store three states (0, 1, and don’t-care). In processors,
CAMs are used in tag arrays for high-associativity caches
and translation lookaside buffers (TLBs). CAM-like structures
are also used in out-of-order instruction schedulers. CAMs
in processors require both frequent read and write capability,
but not large capacities. Pagiamtzis and Sheikholeslami give
a good overview of the CAM design space [28].

There are several methods of implementing CAM function-
ality on FPGAs that do not have hard CAM blocks [29]. CAMs
implemented in soft logic use registers for storage and LUTs to
read, write, and search the stored bits. Another proposal, which
we will refer to as BRAM-CAM, stores one-hot encoded
match-line values in block RAM to provide the functionality of
a w x b-bit CAM using a 2b % w-bit block RAM [30]. The soft
logic CAM is the only design that provides one-cycle writes.
The BRAM-CAM offers improved bit density but requires
two-cycle writes — one cycle each to erase then add an entry.
We do not consider FPGA CAM implementations with even
longer write times that are only useful in applications where
modifying the contents of the CAM is a rare event, such as
modifying a network routing table.

Table VI shows a variety of custom CMOS and FPGA CAM
designs. Search time indicates the time needed to perform an
unpipelined CAM lookup operation. The FPGA vs. custom
CMOS ratios compare the delay (search time) and density
between each custom CMOS design example and an FPGA
soft logic implementation of a CAM of the same size. Figs. 3
and 4 plot these and also 8-bit wide and 128-bit wide soft
logic CAMs of varying depth.

CAMs can achieve delay comparable to SRAMs but at
a high cost in power. For example, Intel’s 64x128 BCAM

10000
B Custom TCAM

¢ Custom BCAM
V BRAM-CAM *
< Soft logic wx8

= 4 Soft logic wx128
2)
e
©
élooo
; R
g < j<<l<lq
2 v < W [|
v < Y4q
v W
100
0.01 0.03 0.12 0.5 2 8 32 128
CAM Size (kbits)
Fig. 3. CAM Search Speed
1000
B Custom TCAM
¢ Custom BCAM
V BRAM-CAM ¢ B
100 | < soft logic wx8 *
. < Soft logic wx128
E
£
£ 10
=3
z
>
S v
a B
5 1 9 9 9 ddaguenn o VAR < < < << <dennnimon
0.1
0.01 0.03 0.13 0.5 2 8 32 128

CAM Size (kbit)
Fig. 4. CAM Bit Density

achieves 4 GHz using 13 fJ/bit/search, while IBM’s 450 MHz
64 %240 ternary CAM uses 1 fl/bit/search.

As shown in Table VI, soft logic binary CAMs have poor
bit density ratios vs. custom CMOS CAMs — from 100 to 210
times worse. We included ternary CAM examples in the table
for completeness, but since they are generally not used inside
processors, we do not include them when summarizing CAM
density ratios. Despite the poor density of soft logic CAMs, the
delay ratio is only 14 times worse. BRAM-CAMs built from
MOKSs can offer 2.4x better density than soft logic CAMs
but needs two cyles per write. The halved write bandwidth of
BRAM-CAMs make them unsuitable for performance-critical
uses, such as tag matching in instruction schedulers and L1
caches.

We observe that the bit density of soft logic CAMS is nearly
the same as using registers to implement RAM (Table 1V),
suggesting that most of the area inefficiency comes from using
registers for storage, not the added logic to perform associative
searching.

E. Multipliers

Multiplication is an operation performed frequently in signal
processing applications, but not used as often in processors. In
a processor, only a few multipliers would be found in ALUs
to perform multiplication instructions. Multiplier blocks can
also be used to inefficiently implement shifters and multiplex-
ers [38].

Fig. 5 shows the latency of multiplier circuits on custom
CMOS and on FPGA using hard DSP blocks. Latency is

10000

o ¢ L
°
10 TR a—— 1 1]
g LEK R I % o e e
5 ¢ £1000 e o000,
S] é ”‘\
u =
u
B Custom CMOS B Custom CMOS \
@ Stratix Il @ Stratix Il
0.1 100
4 8 16 32 64 128 256 512 1 2 8 16 2 64 128 256
Multiplier Size (bits) Adder length
Fig. 5. Multiplier Latency Fig. 7. Adder Delay
100,000 TABLE VIII
: ADDERS. AREA AND DELAY NORMALIZED TO 65 NM PROCESS.
- . Size fine Area Delay Area
10.000 max
~ . Design (bity (MHz) (mm?) Ratio Ratio
T +
§1Aooo ® Agah [39] 32 1200013V - 20 -
- o Kao 90 nm [40] 64 7100 1.3V 0.016 19 4.5
Pentium 4 [41] 32 900013V - 16 -
0.100 — * ¢ = IBM [42] 108 3700 1.0V 0.017 15 6.9
¢ ¢ ° : Custom CMOS 32 593 0.035
0010] st Stratix 1T 64 374 0.071
4 8 16 2 64 128 256 512 108 242 0.119

Multiplier Size (bits)
Fig. 6. Multiplier Area

the product of the cycle time and the number of pipeline
stages, and does not adjust for unbalanced pipeline stages or
pipeline latch overheads. Table VII shows details of the design
examples.

The two IBM multipliers have latency ratios comparable
to full processor cores. Intel’s 16-bit multiplier design has
much lower latency ratios as it appears to target low power
instead of delay. In designs where multiplier throughput is
more important than latency, multipliers can be made more
deeply pipelined (3 and 4 stages in these examples) than the
hard multipliers on FPGAs (2 stages), and throughput ratios
can be even higher than the latency ratios.

The area of the custom CMOS and FPGA multipliers are
plotted in Fig. 6. FPGA multipliers are relatively area-efficient.

TABLE VII
MULTIPLIER AREA AND DELAY, NORMALIZED TO 65 NM PROCESS.
UNPIPELINED LATENCY IS PIPELINED CYCLE TIME X STAGES.

Desien Size Stages Latency Area Ratios

& & (ns) (mm?) Latency Area
Intel 90 nm
1.3V 133] 16x16 1 0.81 0.014 34 47
IBM 90 nm
SOI 1.4V 36 54 x 54 4 0.41 0.062 22 7.0
IBM 90 nm
SOLI3V [37]53><53 3 0.51 0.095 17 4.5
Stratix Il 16x16 1 2.8 0.066
Stratix III 54x54 1 8.8 0.43

The area ratios for multipliers of 4.5-7.0x are much lower than
for full processor cores (17-27x, Section IV-A).

F. Adders

Custom CMOS adder circuit designs can span the area-delay
trade-off space from slow ripple-carry adders to logarithmic-
depth fast adders. On an FPGA, adders are usually imple-
mented using hard carry chains that implement variations of
the ripple-carry adder, although carry-select adders have been
also been used. Although fast adders can be implemented
on FPGAs with soft logic and routing, the lack of dedicated
circuitry means fast adders are bigger and usually slower than
the ripple-carry adder with hard carry chains [43].

Fig. 7 plots a comparison of adder delay, with details
in Table VIII. The Pentium 4 delay is conservative as the
delay given is for the full integer ALU. FPGA adders achieve
delay ratios of 15-20x and a low area ratio of around 4.5-
7x. Despite the use of dedicated carry chains on the FPGA,
the delay ratios are fairly high because we compare FPGA
adders to high-performance custom CMOS adders. For high-
performance applications, such as in processors, FPGAs offer
little flexibility in trading area for even more performance by
using a faster circuit-level design.

G. Multiplexers

Multiplexers are found in many circuits, yet we have found
little literature that provides their area and delay in custom
CMOS. Instead, we estimate delays of small multiplexers
using a resistor-capacitor (RC) analytical model, the delays

TABLE IX
ANALYTICAL MODEL OF TRANSMISSION GATE OR PASS TRANSISTOR TREE
MULTIPLEXERS [44] NORMALIZED TO 65 NM PROCESS.

Mux FPGA Custom CMOS

Tnputs Area Delay Delay Delay
(mm?) (ps) (ps) Ratio

2 0.0011 210 2.8 74

4 0.0011 260 4.9 53

8 0.0022 500 9.1 54

16 0.0055 680 18 37

32 0.0100 940 29 32

64 0.0232 1200 54 21

TABLE X

DELAY OF MULTIPLEXER-DOMINATED CIRCUITS

Custom
Circuit D:lEG? 5) CMOS Ratio
y P Delay (ps)
65 nm Pentium 4 Shifter 2260 111 20
Stratix III ALM
Long path 2500 350 7.1
Short path 800 68 11.7

of the Pentium 4 shifter unit, and the delays of the Stratix
IIT ALM. Our area ratio estimate comes from an indirect
measurement using an ALM.

Table IX shows a delay comparison between an FPGA and
an analytical model of transmission gate or pass gate tree
multiplexers [44]. This unbuffered switch model is pessimistic
for larger multiplexers, as active buffer elements can reduce
delay. On an FPGA, small multiplexers can often be com-
bined with other logic with minimal extra delay and area, so
multiplexers measured in isolation are likely pessimistic. For
small multiplexers, the delay ratio is high, roughly 40-75x.
Larger multiplexers appear to have decreasing delay ratios,
but we believe this is largely due to the unsuitability of the
unbuffered designs to which we are comparing.

An estimate of the multiplexer delay ratio can also be made
by comparing the delay of larger circuits that are composed
mainly of multiplexers. The 65 nm Pentium 4 integer shifter
datapath [41] is one such circuit, containing small multiplexers
(sizes 3, 4, and 8). We implemented the same datapath
excluding control logic on the Stratix III. A comparison of
the critical path delay is shown in Table X. The delay ratio
of 20x is smaller than suggested by the isolated multiplexer
comparison, but may be optimistic if Intel omitted details
from their shifter circuit diagram causing our FPGA equivalent
shifter to be oversimplified.

Another delay ratio estimate can be made by examining the
Stratix III Adaptive Logic Module (ALM) itself, as its delay
consists mainly of multiplexers. We implemented a circuit
equivalent to an ALM as described in the Stratix III Hand-
book [45], comparing delays of the FPGA implementation to
custom CMOS delays of the ALM given by the Quartus timing
models. Internal LUTs are modeled as multiplexers that select

TABLE XI
PIPELINE LATCH DELAY

Design Register Delay (ps) Delay Ratio
[47] 35 (90 ps in 180 nm) 12
[48] 32 (2.5 FO4) 14
[49] 23 (1.8 FO4) 19
Geometric Mean 29.5 15
Stratix III 436 -

between static configuration RAM bits. Each ALM input pin
is modeled as a 21-to-1 multiplexer, as 21 to 30 are reasonable
sizes according to Lewis et al. [46].

We examined one long path and one short path, from after
the input multiplexers for pins datab and dataf0, respectively,
terminating at the LUT register. Table X shows delay ratios
of 7.1x and 11.7x for the long and short paths, respectively.
These delay ratios are lower compared to previous examples
due to the lower power and area budgets preventing custom
FPGAs from being as aggressively delay-optimized as custom
processors, and to extra circuit complexity not shown in the
Stratix III Handbook.

We can also estimate a lower bound on the multiplexer area
ratio by implementing only the multiplexers in our FPGA
equivalent circuit of an ALM, knowing the original ALM
contains more functionality than our equivalent circuit. Our
equivalent ALM consumes 104 ALUTSs, or roughly 52 ALMs,
resulting in an estimated area ratio of 52x. However, the real
ALM area ratio is substantially greater, as we implemented
only the ALM’s input and internal multiplexers and did not
include global routing resources or configuration RAM. A rule
of thumb is that half of an FPGA’s core area is spent in the
programmable global routing network, doubling the area ratio
estimate to 104 x while still neglecting the configuration RAM.

In summary, groups of multiplexers (measured from the
Pentium 4 shifter and ALM) have delay ratios below 20x,
with small isolated multiplexers being worse (40-75x). How-
ever, multiplexers are particularly area-intensive with an area
ratio greater than 100x. Thus we find that the intuition that
multiplexers are expensive on FPGAs is justified, especially
from an area perspective.

H. Pipeline Latches

In synchronous circuits, the maximum clock speed of a
circuit is typically limited by a register-to-register delay path
from a pipeline latch?, through a pipeline stage’s combina-
tional logic, to the next set of pipeline latches. The delay of
a pipeline latch (its setup and clock-to-output times) impacts
the speed of a circuit and the clock speed improvement when
increasing pipeline depth. Note that hold times do not directly
impact the speed of a circuit, only correctness.

The “effective” cost in delay of inserting an extra pipeline
register into LUT-based combinational pipeline logic is mea-
sured by observing the increase in delay as the number

3Latch refers to pipeline storage elements. This can be a latch, flip-flop, or
other implementation.

of LUTs between registers increases, then extrapolating the
delay to zero LUTs. This method is different from, and more
pessimistic than, simply summing the T,,, T%,, clock skew,
and one extra LUT-to-register interconnect delay to reach
a regsiter, which is 260ps. This pessimism occurs because
inserting a register also impacts the delay of the combinational
portion of the delay path. The measured latch delay in Stratix
IIT is 436 ps.

Table XI shows estimates of the delay of a custom CMOS
pipeline latch. The 180 nm Pentium 4 design assumed 90 ps
of pipeline latch delays including clock skew [47], which we
scaled according to the FO1 ring oscillator delays for Intel’s
processes (11 ps at 180 nm to 4.25 ps at 65 nm) [22]. Hartstein
et al. and Hrishikesh et al. present estimates expressed in
fanout-of-four (FO4) delays, which were scaled to an esti-
mated FO4 delay of 12.8 ps for Intel’s 65 nm process.

Thus, the delay ratio for a pipeline latch ranges from 10 to
15 times. Although we do not have area comparisons, registers
are considered to occupy very little FPGA area because more
LUTs are used than registers in most FPGA circuits, yet FPGA
logic elements include at least one register for every LUT.

L. Interconnect Delays

Interconnect delay comprises a significant portion of the
total delay in both FPGAs and modern CMOS processes.
In this section we explore the point-to-point delay of these
technologies, and include the effect of congestion on these
results.

1) Point-to-Point Routing: In this section, we measure the
wire delay of a point-to-point (single fanout) connection.
In modern CMOS processes, there are multiple layers of
interconnect wires, for dense local connections and faster
global connections. On an FPGA, an automated router chooses
a combination of faster long wires or more abundant short
wires when making a routing connection.

For custom CMOS, we approximate the delay of a buffered
wire using a lumped-capacitance model with interconnect
and transistor parameters from the International Technology
Roadmap for Semiconductors (ITRS) 2007 report [50]. The
ITRS 2007 data could be pessimistic when applied to high-
performance CMOS processes used in processors, as Intel’s
65 nm process uses larger pitch and wire thicknesses than
the ITRS parameters, and thus reports lower wire delays [22].
On the Stratix III FPGA, point-to-point delay is measured
using the delay between two manually-placed registers with
automated routing, with the delay of the register itself sub-
tracted out We assume that LABs on the Stratix III FPGA
have an aspect ratio (the vertical/horizontal ratio of delay for
each LAB) of 1.6 because it gives a good delay vs. manhattan
distance fit.

Fig. 8 plots the point-to-point wire delays for custom CMOS
and FPGA wires versus the length of the wire. The delay for
short wires (under 20 pum) is dominated by the delay of the
driver and load buffers (i.e., one FO1 delay). These delays may
be optimistic for global wires because we do not include the
delay of the vias required to access the top layers of wiring.
The FPGA point-to-point wire delays are plotted as “Stratix

10000

1000

Delay (ps)
=
o
o

O Stratix |1l Area Ad-
justed

Stratix 11

10 — CMOS Local Buffered

— CMOS Intermediate
Buffered

— CMOS Global Buf-
fered

1
1 10 100 1000

. . . Distance (um)
Point-to-Point Routing Delay

10000 100000

Fig. 8.

III”. FPGA short local wires (100 um) have a delay ratio
around 9x compared to “local” wires of the same length. Long
wire delay (above 10000 pm) is quite close (2x) to CMOS
for the same length of wire.

When trying to measure the impact of wire delays on a
circuit, routing delays are more meaningful when “distance”
is normalized to the amount of “logic” that can be reached.
To approximate logic density-normalized routing delays, we
adjust the FPGA routing distance by the square-root of the
FPGA'’s overall area overhead vs. custom CMOS (v/23x =
4.8x). That is, a circuit implemented on an FPGA will need
to use wires that are 4.8 times longer than the equivalent circuit
implemented in custom CMOS.

The logic density-normalized routing delays are plotted as
“Stratix III Area Adjusted” in Fig. 8. Short local FPGA wires
(100 pm) have a logic density-normalized delay ratio of 20x,
while long global wires (7500 pm) have a delay ratio of only
9x. The short wire delay ratio is comparable to the overall
delay ratio for full processors, but the long wire delay ratio
is half that, suggesting that FPGAs are less affected by long
wire delays than custom CMOS.

2) FPGA Routing Congestion: Section IV-I1 compared
FPGA vs. custom CMOS point-to-point routing delays in an
uncongested chip. These delays could be optimistic compared
to routing delays in real circuits where congestion causes
routes to take sub-optimal paths. This section shows how much
FPGA routing delay changes from the ideal point-to-point
delays due to congestion found in real FPGA designs.

To measure the impact of congestion, we compare the delay
of route connections found on near-critical paths in a soft
processor to the delay of routes travelling the same distance on
an empty FPGA. We synthesized two soft processors for this
measurement: The OpenSPARC T1, a large soft processor, and
the Nios II/f, a small soft processor specifically designed for
FPGA implementation. We extracted register-to-register timing
paths that had delay greater than 90% of the critical path delay
(i.e. the top 10% of near-critical paths). Timing paths are made
up of one or more connections, where each connection is a
block driving a net (routing wires) and terminating at another
block’s input. For each connection in the top 10% of paths, we
observed its delay as reported by the Quartus timing analyzer
and its manhattan distance calculated by placement locations
of the source and destination blocks.

2500

2000

B
> 1500
@
a
k]
[}
£ 1000
o
e
jo3
= —Empty Stratix |1l Moving Average
- —SPARC T1 Top 10% Moving
500 Average
Empty Stratix I1]
SPARCT1 Top 10% (< 0.9 ns
slack)
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Manhattan Distance (um)
(a) SPARC T1
1200
1000
2 800
=
©
3
z 600
[}
c
i=
o
£ 400
jo3
E
200 - a‘npty Stratix 111 MovF ng Average
—Nios Il Top 10% Moving Average
Empty Stratix [11
0 Nios |1 Top 10% (< 0.37 ns slack)
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Manhattan Distance (um)
(b) Nios II/f
Fig. 9. Comparing Interconnect Delays Between an Empty FPGA and Soft
Processors

The resulting delay vs. distance plots are shown in Fig. 9(a)
for the OpenSPARC T1 and Fig. 9(b) for the Nios II/f. The
empty-chip measurements are the same as those from the
preceding section (Fig. 8). The larger size of the OpenSPARC
T1 results in many longer-distance connections, while the
longest connection within the top 10% of paths in the small
Nios II/f has a distance of 1800 pm or about the width of
15 LAB columns. We see from these plots that the amount
of congestion found in typical soft processors does not ap-
preciably impact the routing delays for near-critical routes,
and that routing congestion does not alter our conclusions in
the preceding section that FPGA long wire routing delays are
relatively low.

J. Off-Chip Large-Scale Memory

Table XII gives a brief overview of off-chip DRAM la-
tency and bandwidth as commonly used in processor systems.
Random read latency is measured on Intel DDR2 and DDR3
systems with off-chip (65 ns) and on-die (55 ns) memory
controllers. FPGA memory latency is calculated as the sum of
the memory controller latency and closed-page DRAM access
time [51]. While these estimates do not account for real access
patterns, they are enough to show that off-chip latency and
throughput ratios between custom CMOS and FPGA are far
lower than for any of the in-core circuits discussed above.

10

TABLE XII
OFF-CHIP DRAM LATENCY AND THROUGHPUT. LATENCY ASSUMES
CLOSED-PAGE RANDOM ACCESSES.

Custom FPGA

CMOS [51] Ratio
DDR?2 Frequency (MHz) 533 400 1.3
DDR3 Frequency (MHz) 800 533 1.5
Read Latency (ns) 55-65 85 1.4

TABLE XIII
DELAY AND AREA RATIO SUMMARY

Design Delay Ratio Area Ratio
Processor Cores 18 - 26 17 - 27
SRAM Irw 7-10 2-5
SRAM 42w LUTs / LVT 15/9 179/ 12
CAM 14 100 - 210
Multiplier 17 - 22 45-170
Adder 15-20 45-17.0
Multiplexer 20 - 75 > 100
Pipeline latch 12 - 19 -
Routing 9-20 -
Off-Chip Memory 1.3-15 -

K. Summary of Building Block Circuits

A summary of our estimates for the FPGA vs. custom
CMOS delay and area ratios is given in Table XIII. Note that
the range of delay ratios (from 7-75X) is smaller than the
range of area ratios (from 2-210x). The multiplexer circuit has
the highest delay ratios. Hard blocks used to support specific
circuit types have only a small impact on delay ratios, but they
considerably impact the area-efficiency of SRAM, adders, and
multiplier circuits. Multiplexers and CAMs are particularly
area-inefficient.

Previous work [4] reported an average of 3.0-3.5x delay
ratio and 18-35X% area ratio for FPGA vs. standard cell ASIC
for a set of complete circuits. Although we expect both ratios
to be higher when comparing FPGA against custom CMOS,
our processor core delay ratios are higher but area ratios are
slightly lower, which is initially surprising. We believe this
is likely due to custom processors being optimized more for
delay at the expense of area compared to typical standard cell
circuits.

V. IMPACT ON PROCESSOR MICROARCHITECTURE

Section IV measured the area and delay differences be-
tween different circuit types targeting both custom CMOS
and FPGAs. In this section we relate those differences to the
microarchitectural design of circuits in the two technologies.
It is important to note that area is often a primary concern in
the FPGA space, given the high area cost of programmability,
leading to lower logic densities and high relative costs of the
devices. In addition, the results above show that the area ratios
between different circuit types vary over a larger range (2-
200x) than the delay ratios (7-75x). For both of these reasons,

we expect that area considerations will have a stronger impact
on microarchitecture than delay.

The building blocks we measured cover many of the circuit
structures used in microprocessors:

e« SRAMs are very common, but take on different forms.
Caches are usually low port count and high density
SRAMs. Register files use high port count, require higher
speed, and are lower total capacity. RAM structures are
also found in various predictors (branch direction and
target, memory load dependence), and in various buffers
and queues used in out-of-order microarchitectures (re-
order buffer, register rename table, register free lists)
CAMs can be found in high-associativity caches and
TLBs. In out-of-order processors, CAMs can also be
used for register renaming, memory store queue address
matching, and instruction scheduling (in reservation sta-
tions). Most of these can be replaced by RAMs, although
store queues and instruction scheduling are usually CAM-
based.

Multipliers are typically found only in ALUs (both inte-
ger and floating-point).

Adders are also found in ALUs. Addition is also used for
address generation (AGUs), and in miscellaneous places
such as the branch target address computation.

Small multiplexers are commonly scattered within ran-
dom logic in a processor. Larger, wider multiplexers can
be found in the bypass networks near the ALUs.
Pipeline latches and registers delimit the pipeline stages
(which are used to reduce the cycle time) in pipelined
processors.

We begin with general suggestions applicable to all processors,
then discuss issues specific to out-of-order processors. Our
focus on out-of-order processors is driven by the desire to
improve soft processor performance given the increasing logic
capacity of new generations of FPGAs, while also preserving
the ease of programmability of the familiar single-threaded
programming model.

A. Pipeline Depth

Pipeline depth is one of the fundamental choices in the
design of a processor microarchitecture. Increasing pipeline
depth results in higher clock speeds, but with diminishing
returns due to pipeline latch delays. Hartstein et al. [48] show
that the optimal processor pipeline depth for performance is
proportional to i—: where 1, is the total logic delay of
the processor pipeline, and ¢, is the delay overhead of a
pipeline latch. Other properties of a processor design, such
as branch prediction accuracy, the presence of out-of-order
execution, or issue width, also affect the optimal pipeline
depth, but these properties depend on microarchitecture, not
implementation technology. The implementation technology-
dependent parameters ¢, and ¢, have a similar effect on the
optimal pipeline depth for different processor microarchitec-
tures, and these are the only two parameters that change when
comparing implementations of the same microarchitecture on
two different implementation technologies (custom CMOS vs.
FPGA).

11

Section IV-H showed that the delay ratio of registers (which
is the t, of the FPGA vs. the £, custom CMOS, measured as
~15x) is lower than the delay ratio of a complete processor
(which is roughly* the ¢,, of the processor on the FPGA vs. the
t, of a custom CMOS processor, ~22x), increasing t,, /to on
FPGA. The change in ¢,/t, is roughly (22/15), suggesting
soft processors should have pipeline depths roughly 20%
longer compared to an equivalent microarchitecture imple-
mented in custom CMOS. Today’s soft processors prefer short
pipelines [52] because soft processors had low complexity and
have low ¢, and not due to a property of the FPGA substrate.
In addition, pipeline registers are nearly free in area in many
FPGA designs because most designs consume more logic cells
(LUTs) than registers, further encouraging deeper pipelines in
soft processors.

B. Interconnect Delay and Partitioning of Structures

The portion of a chip that can be reached in a single clock
cycle is decreasing with each newer process generation, while
transistor switching speeds continue to improve. This leads to
microarchitectures that partition large structures into smaller
ones. This could be dividing the design into clusters (such as
grouping a register file with ALUs into a cluster and requiring
extra latency to communicate between clusters) or employing
multiple cores to avoid global, one-cycle, communication [7].

In Section IV-1, we observed that after adjustment for the
reduced logic density of FPGAs, long wires have a delay
ratio roughly half that of a full processor core. The relatively
faster long wires lessen the impact of global communication,
reducing the need for aggressive partitioning of designs for FP-
GAs. In practice, FPGA processors have less logic complexity
than high-performance custom processors, further reducing the
need to partition.

C. ALUs and Bypassing

Multiplexers consume much more area (>100x) on FPGAs
than custom CMOS (Section IV-G), making bypass networks
that shuffle operands between functional units more expensive
on FPGAs. On the other hand, the functional units themselves
are often composed of adders and multipliers and have a lower
4.5-7x area ratio. The high cost of multiplexers reduces the
area benefit of using multiplexers to share these functional
units.

There are processor microarchitecture techniques that re-
duce the size of operand-shuffling networks relative to the
number of ALUs. “Fused” ALUs that perform two or more
dependent operations at a time increase the amount of compu-
tation relative to operand shuffling, such as the common fused

“The value of ¢, is the total propagation delay of a processor with
the pipeline latches removed, and is not easily measured. It can be
approximated by the product of the number of pipeline stages (V)
and cycle time if we assume perfectly balanced stages. The cycle time
includes both logic delay (¢,/N) and latch overhead (¢,) components
for each pipeline stage, but since we know the custom CMOS vs.
FPGA t, ratio is smaller than the cycle time ratio, using the cycle time
ratio as an estimate of the ¢, ratio results in a slight underestimate
of the ¢, ratio.

multiply-accumulate unit and interlock collapsing ALUs [53],
[54]. Other proposals cluster instructions together to reduce the
communication of operand values to instructions outside the
group [55], [56]. These techniques may benefit soft processors
more than hard processors.

D. Cache Organization

Set-associative caches have two common implementation
styles. Low associativity caches replicate the cache tag RAM
and access them in parallel, while high associativity caches
store tags in CAMs. High associativity caches are more expen-
sive on FPGAs because of the high area cost of CAMs (100-
210x bit density ratio). In addition, custom CMOS caches
built from tag CAM and data RAM blocks can have the
CAM’s decoded match lines directly drive the RAM’s word
lines, while an FPGA CAM must produce encoded outputs that
are then decoded by the SRAM, adding a redundant encode-
decode operation that was not included in the FPGA circuits in
Section IV-D (we assumed CAMs with decoded outputs). In
comparison, custom CMOS CAMs have minimal delay and
2-3x area overhead compared to RAM allowing for high-
associativity caches (with a CAM tag array and RAM data
array) to have an amortized area overhead of around 10%,
with minimal change in delay compared to lower-associativity
set-associative caches [57].

CAM-based high-associativity caches are not area efficient
in FPGA soft processors and hence soft processor caches
should have lower associativity than similar hard processors.
Soft processor caches should also be of higher capacity than
those of similar hard processors because of the good area
efficiency of FPGA SRAMs (2-5x density ratio).

E. Memory System Design

The lower area cost of block RAM encourages the use of
larger caches, reducing cache miss rates and lowering the de-
mand for off-chip DRAM bandwidth. The lower clock speeds
of FPGA circuits further reduce off-chip bandwidth demand.
The latency and bandwidth of off-chip memory is only slightly
worse on FPGAs than on custom CMOS processors as they
use essentially the same commodity DRAM:s.

Hard processors use many techniques to improve memory
system performance, such as DRAM access scheduling, non-
blocking caches, prefetching, memory dependence specula-
tion, and out of order memory accesses. The lower off-chip
memory system demands on FPGA soft processors suggest
that more resources should be dedicated to improving the
performance of the processor core than to improving memory
bandwidth or tolerating latency.

FE. Out-of-Order Microarchitecture

Superscalar out-of-order processors are more complex than
single-issue in-order processors. The larger number of instruc-
tions and operands in flight increase multiplexer and CAM
use, leading to the common expectation that out-of-order pro-
cessors would be disproportionately expensive on FPGAs and
therefore not a suitable choice for use in soft processors. How-
ever, section IV-A suggests that processor complexity does

12

rrrrrrr T —

Scheduler

. @

Out of order:

-
i
|:| Stores operand values

o
o
3
3

Fig. 10. A Typical Out-of-order Processor Microarchitecture.

lww
I stoes operandva
(a) Intel P6 (b) AMD K7 (c) Physical Register
File
Fig. 11. Out-of-order Processor Microarchitecture Variants.

not have a strong correlation with FPGA vs. custom CMOS
area ratio: even when not specifically FPGA-optimized, the
multiple-issue out-of-order Nehalem processor has an area
ratio similar to the three in-order designs, suggesting that out-
of-order and in-order processor designs appear equally suited
for FPGA implementation. One possible explanation is that,
for issue widths found in current processors, most of the area
in a complex out-of-order processor is not spent on the CAM-
like schedulers and multiplexer-like bypass networks, even
though these structures are often high power, timing critical,
and scale poorly to very wide issue widths. The small size of
the CAMs and multiplexers mean that even particularly high
area ratios for CAMs and multiplexers cause only a small
impact to the area of the whole processor core.

Fig. 10 shows the high-level organization of a typical
out-of-order processor. Fetch, decode, register rename, and
instruction commit are done in program order. The reorder
buffer (ROB) tracks instructions as they progress through the
out-of-order section of the processor. Out-of-order execution
usually includes a CAM-based instruction scheduler, a register
file, some execution units (ALUs), and bypass networks. The
memory load/store units and the memory hierarchy are not
shown in this diagram.

There are several styles of microarchitectures commonly
used to implement precise interrupt support in pipelined or out-
of-order processors and many variations are used in modern
processors [58], [59]. The main variations between the mi-
croarchitecture styles concern the organization of the reorder
buffer, register renaming logic, register file, and instruction
scheduler and whether each component uses a RAM- or CAM-
based implementation. Some common organizations used in
recent out-of-order processors are shown in Fig. 11. These
organizations have important implications on the RAM and
CAM size and port counts used by a processor.

The Intel P6-derived microarchitectures (from Pentium Pro

to Nehalem) use reservation stations and a separate committed
register file (Fig. 11(a)) [60]. Operand values are stored in
one of three places: retired register file, reorder buffer, or
reservation stations. The retired register file stores register
values that are already committed. The reorder buffer stores
register values that are produced by completed, but not com-
mitted, instructions. When an instruction is dispatched, it reads
any operands that are available from the retired register file
(already committed) or reorder buffer (not committed), stores
the values in the reservation station entry, and waits until the
remaining operand values become available on the bypass
networks. When an instruction commits, its result value is
copied from the reorder buffer into the retired register file.
This organization requires several multiported RAM structures
(reorder buffer and retired register file) and a scheduler CAM
that stores operand values (any number of waiting instructions
may capture a previous instruction’s result).

The organization used in the AMD K7 and derivatives (K7
through K10) unifies the speculative (future file) and retired
register files into a single multiported RAM structure (labeled
“RegFile RAM” in Fig. 11(b) [61]). Like the P6, register val-
ues are stored in three places: reorder buffer, register file, and
reservation stations. Unlike the P6, dispatching instructions
only need to read the future file RAM but not from the reorder
buffer. However, result values are still written into the reorder
buffer, and, like the P6, are copied into the register file when an
instruction commits. Using a combined future file and register
file reduces the number of read ports required for the ROB (the
ROB is read only for committing results), but increases the
number of read ports for the register file. Like the P6, the K7
uses a reservation station scheduler that stores operand values
in a CAM. For FPGA implementations, the K7 organization
seems to be a slight improvement over the P6 because only
the register file is highly multiported (the ROB only needs
multiple write ports and sequential read for commit), and the
total number of RAM ports is reduced slightly.

The physical register file organization (PRF, Fig. 11(c))
has been used in many hard processor designs, such as the
MIPS R10K, IBM Power4, Power5, and Power7, Intel Pentium
4 and Sandy Bridge, DEC 21264, and AMD Bobcat and
Bulldozer. [62]-[67]. In a physical register file organization,
operand values are stored in one central register file. Both
speculative and committed register values are stored in the
same structure. The register renamer explicitly renames archi-
tectural register numbers into indices into the physical register
file, and must be able to track which physical registers are in
use and roll back register mappings during a pipeline flush.
After an instruction is dispatched into the scheduler, it waits
until all of its operands are available. Once the instruction
is chosen to be issued, it reads all of its operands from
the physical register file RAM or bypass networks, normally
taking one extra cycle compared to the P6 and K7. The
instruction’s result is written back into the register file RAM
and bypass networks. When an instruction commits, only
the state of the register renamer needs to be updated, and
there is no copying of register values as in the previous two
organizations.

The physical register file organization has several advan-

13

tages that are particularly significant for FPGA implementa-
tions. Register values are only stored in one structure (the
PRF), reducing the number of multi-ported structures required.
Also, the scheduler’s CAM does not store operand values,
allowing the area-inefficient CAM to be smaller, with operand
values stored in a more area-efficient register file RAM. This
organization adds some complexity to track free physical
registers and an extra pipeline stage to access the PRF. FPGA
RAMs have particularly low area cost (Section IV-B), but
CAMs are area expensive (Section IV-D). The benefits of
reducing CAM size and multiported RAMs suggest that the
PRF organization would be particularly preferred for FPGA
implementations

The delay ratio of CAMs (15x%) is not particularly poor,
so CAM-based schedulers are reasonable on FPGA soft
processors. However, the high area cost of FPGA CAMs
means scheduler capacity should be kept small. In addition to
reducing the number of scheduler entries, reducing scheduler
area can be done by reducing the number of entries or the
amount of storage required per entry. One method is to choose
an organization that does not store operand values in the CAM,
like the PRF organization (Fig. 11(c)). Schedulers can be data-
capturing where operand values are captured and stored in the
scheduler, or non data-capturing where the scheduler tracks
only the availability of operands, with values fetched from the
register file or bypass networks when an instruction is finally
issued. Non data-capturing schedulers reduce the amount of
data that must be stored in each entry of a scheduler.

The processor organizations described above all use a CAM
for instruction scheduling. It may be possible to further reduce
the area cost by removing the CAM. There are CAM-free
instruction scheduler techniques that are not widely imple-
mented [6], [68], but may become more favourable in soft
processors. Reorder buffers, register renaming logic, and reg-
ister files have occasionally been built using CAMs in earlier
processors, but are commonly implemented without CAMs.

On FPGAs, block RAMs come in a limited selection of
sizes, with the smallest block RAMs commonly being 4.5 kbit
to 20 kbit. Reorder buffers and register files are usually
even smaller in capacity but are limited by port width or
port count so processors on FPGAs can have larger capacity
ROBs, register files, and other port-limited RAM structures
at little extra cost. In contrast, expensive CAMs limit soft
processors to small scheduling windows (instruction scheduler
size). Microarchitectures that address this particular problem
of large instruction windows with small scheduling windows
may be useful in soft processors [69].

VI. CONCLUSIONS

We have presented area and delay comparisons of pro-
cessors and their building block circuits implemented on
custom CMOS and FPGA substrates. In 65 nm processes,
we found FPGA implementations of processor cores have 18-
26x greater delay and 17-27x greater area usage than the
same processors in custom CMOS. The FPGA vs. custom
CMOS delay ratios of most processor building block cir-
cuits fall within the relatively narrow delay ratio range for

complete processor cores, but area ratios have much wider
variation. Building blocks such as adders and SRAMs that
have dedicated hardware support on FPGAs are particularly
area-efficient, while multiplexers and CAMs are particularly
area-inefficient.

In the second part of this paper, we discussed the impact
of these measurements on microarchitecture design choices:
The FPGA substrate encourages soft processors to have larger,
low-associativity caches, deeper pipelines, and fewer bypass
networks than similar hard processors. Also, while current
soft processors tend to be in-order, out-of-order execution is a
valid design option for soft processors, although scheduling
windows should be kept small and a physical register file
(PRF) organization should be used to reduce the area impact
of using a CAM-based instruction scheduler.

[1]

[2]
[4]

[5]

[6]
[7]

[8]

[10]
(1]
[12] s
[13]

[14]
[15]

[16]

[17]
(18]

[19]
[20]

[21]
[22]

(23]

[24]
[25]
[26]
[27]
(28]

[29]

REFERENCES

H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom CMOS
and 5the4lmpact on Processor Microarc itecture,” in Proc. FPGA, 2011,
pp. 5-14.

Altera, “Nios II processor.”

Xilinx, “MicroBlaze soft processor.”

I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Computer—A ided Design of Integrated Circuits and Systems,
vol. 26, no. 2, pp. 203-215, Feb. 2007.

D. Chinnery and K. Keutzer, Closing the Gap Between ASIC & Custom,
Tools and Techniques for High-Performance ASIC Design. Kluwer
Academic Publishers, 2002.

S. Palacharla er al, “Complexity-effective superscalar processors,”
SIGARCH Comp. Arch. News, vol. 25, no. 2, pp. 206-218, 1997.

V. Agarwal et al., “Clock rate versus IPC: The end of the road for
conventional microarchitectures,” SSIGARCH Comp. Arch. News, vol. 28,

no. 2, pp. 248-259, May 2000.
P. Metzgen and D. Nancekievill, “Multiplexer restructuring for FPGA
1mplementat1on cost reduction,” in Proc. DAC, 2005, pp. 421-426.
P. Metzgen, “A h1 ferformance 32-bit ALU for programmable logic,”
in Proc. FPGA,
P. H. Wang et al., “Intel Atom processor core made FPGA-
synthesizable,” in Proc. FPGA, 2009, pp. 209-218.
S.-L. Lu et al., “An FPGA- based Pentium in a complete desktop system,”
1n Proc. FPGA 2007, pp. 53-59.

Tyagi et al., “An advanced low power, high performance, strained
channel 65nm technology,” in Proc. IEDM, 2005, pp. 245-247.
K. Mistry et al., “A 45nm logic technology with high-k+metal gate tran-
sistors, strained silicon, 9 Cu interconnect layers, 193nm dry patternin
and 100% Pb-free packagmg in Proc. IEDM, Dec. 2007, pp. 247- 25%
A. S. Leon et al., “A power-efficient high-through ut 32 thread SPARC
processor,” IEEE JSSC vol. 42, no. 1, pp. 295-304 7.
U. Nawathe et al., Irnplementanon ‘of an 8- -core, 64 thread, power-
Sg%cgient SPARC server on a chip,” IEEE JSSC, vol. 43, no. 1, pp. 620,

G. Gerosa et al., “A sub-2 W low power IA processor for mobile internet
devices in 45 nm high-k metal gate CMOS,” IEEE JSSC, vol. 44, no. 1,
pp. 73-82, 2009.

G. Schelle et al., “Intel Nehalem
able” in Proc. FPGA, 2010, pp-
R. Kumar and G. Hinton, “A amrly of 45nm IA processors,
ISSCC, Feb. 2009, pp. 58-59.

Sun Microsystems, “OpenSPARC,” http://www.opensparc.net/, 2010.

J. Davis et al., “A 5.6GHz 64kB dual-read data cache for the POWERG6
processor,” in Proc. ISSCC, 2006.

M. Khellah et al., “A 4.2GHz 0.3mm? 256kb dual-V.. SRAM building
block in 65nm CMOS,” in Proc. ISSCC, Feb. 2006, pp. 2572-2581.

P. Bai et al., “A 65nm Logic Technology Featuring 35nm Gate Lengths,
Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and
0.57 umz SRAM Cell " in Proc. IEDM, 2004, pp. 657-660.

P. Bai, “Foils from “a 65nm logic technology featuring 35nm gate
lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD
and 0.57 um? SRAM cell”,” IEEE International Electron Devices

Meeting, 2004.
L. Chang et al., “A 5.3GHz 8T-SRAM with operation down to 0.41V
in 65nm CMOS,” in Proc. VLSI, Jun. 2007, pp. 252-253.

S. Hsu et al., “An 8.8GHz 198mW 16x64b 1R/IW variation-tolerant
register file in 65nm CMOS,” in Proc. ISSCC, 2006, pp. 1785-1797.
S. Thoziyoor et al., “CACTI 5.1,” HP Laboratories, Palo Alto, Tech.
Rep., 2008.

C. E. LaForest and J. G. Steffan, “Efficient multi-ported memories for
FPGAs,” in Proc. FPGA, 2010, pp. 41-50.

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memo
(CAM) circuits and architectures: A tutorial and survey,” IEEE JSSC,
pp. 712-727, 2006.

K. McLaughhn et al., “Exploring CAM design for network processing
using FPGA technology,” in Proc. AICT-ICIW, 2006, p. 84.

grocessor core made FPGA synthesiz-

”in Proc.

14

(30]

[31]

[32]

(33]
[34]
[35]
[36]
(37]

[38]
[39]
[40]
[41]
[42]

[43]
[44]
[45]

[46]
[47]

[48]

[49]
[50]

[51]
[52]

[53]

[54]
[55]

[56]
[57]
[58]

[59] G

[60]
[61]
[62]
[63]

[64]

[65]

[66]
[67]

[68]
[69]

Virtex-II block RAM

J.-L. Brelet and L. Gopalakrishnan, “Usin
ilinx Application Note

for high performance read/write CAMs,”
XAPP260, 2002.

L Arsovski and R. Wistort, “Self-referenced sense amplifier for across-
chip- VdIldthl’l immune sensrn% in high ferformance content-addressable
memories,” in Proc. CICC, 2006, pp.

D. W. Plass and Y. H. Chan, “IBM POWERG6 SRAM arrays,” IBM
é%b(t)}%nal of Research and Development, vol. 51, no. 6, pp. %47—756,

W. Hu et al., “Godson-3: A scalable multlcore RISC
emulation,” IEEE Micro, vol. 29, no. 09.

A. Agarwal et al., “A dual- supply 4GHZ lng/bn/search 64x128b CAM
in 65nm CMOS,” in Proc. ESSCIRC 32, 2006, pp. 303-306.

S. Hsu et al., “A 110 GOPS/W 16-bit mult1plrer and reconfigurable PLA
loop in 90-nm CMOS,” IEEE JSSC, vol. 41, no. 1, {)p 256-264, 2006.
%Olgelluomlm etal., “An 8GHz ﬂoatrng point multlp ,” in Proc. ISSCC,

rocessor with x86

J. Knang et al., “The design and implementation of double-precision
multi%)lier in a first-generation CELL processor,” in Proc. ICIDT, 2005,
4

P. Jamieson and J. Rose, “Mapping multiplexers onto hard multipliers
in FPGAs.” in IEEE-NEWCAS, 20(%5 pp. 323-326.

A. Agah et al., “Tertiary-tree 12-GHz 32-bit adder in 65nm technology,”
in Proc. ISCAS, 2007, pp. 3006-3009.

S. Kao et al., “A 240ps 64b carry-lookahead adder in 90nm CMOS,” in

Proc. ISSCC, 2006, pp. 1735-1744.

S. B. Wijeratne et al., “A 9-GHz 65-nm Intel Pentium 4 processor integer
execution unit,” IEEE JSSC, vol. 42, no. 1, l;)) 26-37, Jan. 2007.

X. Y. Zhang et al., “A 270ps 20mW 108-bit end-around cargy adder
for multiply-add fused floating point unit,” Signal Processing Systems,
vol. 58, no. 2, pp. 139-144, 2010.

K. Vitoroulis and A. Al-Khalili, “Performance of parallel prefix adders
implemented with FPGA technology,” in Proc. NEWCAS Workshop,
087, pp. 498-501.

M. Alioto and G. Palumbo, “Interconnect-aware design of fast large fan-
in CMOS multiplexers,” IEEE Trans. Circuits and Systems II, vol. 54,
no. 6, pg. 484-488, Jun. 2007.

Altera, Stratix Il Device Handbook Volume 1, 2009.

D. Lewis et al., “The Stratix II logic and routing architecture,”
FPGA, 2005, pp. 14-20.

E. Sprangle and D. Carmean, “Increasing processor performance by
1mp12ement1r15g deeper grpehnes SIGARCH Comp. Arch. News, vol. 30,
no. 2, pp. 2

A. Hartstein and T R. Puzak, “The optimum pipeline depth for a
micro (r)ggessor” SIGARCH Comp Arch. News, voll gO, no. 2, pp. 7-13,
Ma;

M. yS Hrishikesh et al., “The optimal lo Cglc
6 to 8 FO4 inverter delays " in Proc. ISCA 29, 2002, pp. 14-24

ITRS, “International technology roadmap for semiconductors,”
http: Wwwitrs. net/Lrnks/2007ITR /Home2007.htm, 2007.

Altera, External Memory Interface Handbook, Volume 3, Nov. 2011.

P. Yiannacouras et al., “The microarchitecture of FPGA-based soft

processors,” in Proc. CASES, 2005, pp. 202-212.

N. Malik et al., “Interlock collapsing ALU for increased instruction-
level parallelism,” SIGMICRO Newsl., vol. 23, no. 1-2, pp. 149-157,
Dec. 1992.

J. Phlllrps and S. Vassiliadis, “High-performance 3-1 interlock collapsing
ALU’s,” IEEE Trans. Computers vol. 43, no. 3, pp. 257-268, Mar. 1994.
P. G. Sassone and D. S. Wills, “Dynamic Strands: Collapsing Speculative
Dependence Chains for Reducmg Pipeline Communication,” in Proc.

MICRO 37, Dec. 2004, pp. 7-17.

A.W. Bracy, “Mini-graph processing,” Ph.D. dissertation, University of
Pennsylvania, 2008

M. Zhang and K. Asanovic, “Highly-associative caches for low-power

processors,” in Kool Chips Workshop, Micro-33, 2000.

J. Smith and A. Pleszkun, “lmplementing grecise interrupts in pipelined

processors,” IEEE Trans. Computers, vol. 37, no. 5, pp. 562-573, 1988.

Sohi, “Instruction issue logic for high- performance interruptible,

multlple functronal umt pg)ellned computers,” IEEE Trans. Computers,
vol. 39, pp. 349-359

L. Gwennap, “Intel’s P6 uses decou; led superscalar design,” Micropro-
cessor Report, vol. 9, no. 2, pp. 9— 1995.

M. Golden ef al., “A seventh- generanon 'x86 microprocessor,” I[EEE

JSSC, vol. 34, no. 11, pp. 1466-1477, nov 1999

K. Yeager, “The MIPS R10000 superscalar microprocessor,”

IEEE, vol. 16, no. 2, pp. 2841, apr 1996.

G. Hinton et al., “A 0.18-um CMOS IA-32 processor with a 4-GHz
integer execution unit,” /EEE JSSC, vol. 36, no. 11, pp. 1617-1627,
nov 2001.

T. N. Buti ef al., “Organization and implementation of the reg1ster-

renaming mapper for out-of-order IBM POWER4 processors,” IBM

Journal of Research and Development, vol. 49, no. 1, pp. 167-188,

Jan. 2005.

R. Kalla, B. Sinharoy, and J. Tendler, “IBM Power5 chip: a dual-core
multziblbrzaded processor,” Micro, IEEE, vol. 24, no. 2, pp. 40— 47, mar-
apr .

B. Burgess et al., “Bobcat: AMD’s low-power x86 processor,”

IEEE, vol. 31, no. 2, pp. 16-25, march-april 2011.

M. Golden, S. Arekapudi, and J. Vinh, “40-entry unified out-of-order
scheduler and integer execution unit for the AMD Bulldozer x86-64
core,” in Proc. ISSCC, Feb. 2011, pp. 80-82.

F. J. Mesa-Martinez et al., “SEED: Scalable, efficient enforcement of
dependences,” in Proc. PACT, 2006, pp. 254-264

M. Pericas et al., “A decoupled KILO-instruction processor,”

HPCA, pp. 53-64, Feb. 2006.

in Proc.

depth per pipeline stage is

Micro,

Micro,

Proc.

